TY - JOUR
T1 - Deep eutectic solvents in membrane science and technology
T2 - Fundamental, preparation, application, and future perspective
AU - Taghizadeh, Mohsen
AU - Taghizadeh, Ali
AU - Vatanpour, Vahid
AU - Ganjali, Mohammad Reza
AU - Saeb, Mohammad Reza
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Deep eutectic solvents (DESs) are green solvents alternative to ILs with remarkable chemical tunability, which have proved themselves as one of the most promising elements of the membrane technology. Because of their exceptional biodegradability, biocompatibility, and ease of preparation along with chemical tunability, low vapor pressure, low viscosity, and nontoxicity, DESs are appealing candidates for developing polymeric membranes. Very recently, DES-supported membranes (DSMs) have been centered in the attention of researchers in diversified fields from biotechnology, extraction, wastewater purification, and gas separation to energy conservation and storage. Their high reactivity towards polymer chains, especially hydrogen bonding, brings about ion conductivity, efficient separation, and biodegradation. This review highlights DES in the membrane technology applications and undertakes recent advancements in the use of DESs in gas separation, treatment of contaminated waterways, liquid-phase microextraction, fuel cell, and batteries. Due to elevated mechanochemical properties and high selectivity and permeability, the DES-supported membrane has exhibited a high potential ability to be employed as a promising solution for discarding pollutants from polluted water streams and tackling the upcoming water crisis. A particular focus is placed on the fundamentals and various preparation techniques adapted to the most conspicuous features of DES-based membranes (DSMs), characterization of DSMs, and the mechanism of DES selectivity, purification of effluents, gas separation, diffusivity, and permselectivity of gaseous/aqueous molecules through polymeric membranes.
AB - Deep eutectic solvents (DESs) are green solvents alternative to ILs with remarkable chemical tunability, which have proved themselves as one of the most promising elements of the membrane technology. Because of their exceptional biodegradability, biocompatibility, and ease of preparation along with chemical tunability, low vapor pressure, low viscosity, and nontoxicity, DESs are appealing candidates for developing polymeric membranes. Very recently, DES-supported membranes (DSMs) have been centered in the attention of researchers in diversified fields from biotechnology, extraction, wastewater purification, and gas separation to energy conservation and storage. Their high reactivity towards polymer chains, especially hydrogen bonding, brings about ion conductivity, efficient separation, and biodegradation. This review highlights DES in the membrane technology applications and undertakes recent advancements in the use of DESs in gas separation, treatment of contaminated waterways, liquid-phase microextraction, fuel cell, and batteries. Due to elevated mechanochemical properties and high selectivity and permeability, the DES-supported membrane has exhibited a high potential ability to be employed as a promising solution for discarding pollutants from polluted water streams and tackling the upcoming water crisis. A particular focus is placed on the fundamentals and various preparation techniques adapted to the most conspicuous features of DES-based membranes (DSMs), characterization of DSMs, and the mechanism of DES selectivity, purification of effluents, gas separation, diffusivity, and permselectivity of gaseous/aqueous molecules through polymeric membranes.
KW - Deep eutectic solvents
KW - Filteration
KW - Membrane
KW - Separation and purification
KW - Wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=85096115665&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2020.118015
DO - 10.1016/j.seppur.2020.118015
M3 - Review article
AN - SCOPUS:85096115665
SN - 1383-5866
VL - 258
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 118015
ER -