Data Driven Positioning Analysis of Music Streaming Platforms

Ayse Basak Incekas*, Umut Asan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This study investigates the market position of music streaming platforms by analyzing user sentiment and topics expressed in customer reviews. In contrast to traditional methods, this study employs machine learning techniques to extract less biased and more authentic comments from user review data. Sentiment and topic analysis are utilized to identify the emotional tone of the language used and distinct topics discussed within customer reviews of the four most popular music streaming platforms, namely Spotify, Amazon Music, Apple Music, and YouTube Music. The study comprises four main steps, including data collection, cleaning and pre-processing, sentiment analysis, and topic modeling. The results reveal that Amazon Music is prominent in functionality aspects, while Spotify ranks highest across all topics. Apple and YouTube Music have the highest scores in reviews related to customization. The proposed approach provides valuable insights into user perceptions and preferences, which can assist brands in improving their market position. The paper concludes with a summary of the findings, marketing implications, and suggestions for future research.

Original languageEnglish
Title of host publicationIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference
EditorsCengiz Kahraman, Irem Ucal Sari, Basar Oztaysi, Sezi Cevik Onar, Selcuk Cebi, A. Çağrı Tolga
PublisherSpringer Science and Business Media Deutschland GmbH
Pages634-641
Number of pages8
ISBN (Print)9783031397769
DOIs
Publication statusPublished - 2023
EventIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference - Istanbul, Turkey
Duration: 22 Aug 202324 Aug 2023

Publication series

NameLecture Notes in Networks and Systems
Volume759 LNNS
ISSN (Print)2367-3370
ISSN (Electronic)2367-3389

Conference

ConferenceIntelligent and Fuzzy Systems - Intelligence and Sustainable Future Proceedings of the INFUS 2023 Conference
Country/TerritoryTurkey
CityIstanbul
Period22/08/2324/08/23

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • BERTopic
  • Customer reviews
  • Music streaming platforms
  • Sentiment analysis

Fingerprint

Dive into the research topics of 'Data Driven Positioning Analysis of Music Streaming Platforms'. Together they form a unique fingerprint.

Cite this