TY - JOUR
T1 - Damage to n-mOSFETs from electrical stress relationship to processing damage and impact on device reliability
AU - Trabzon, L.
AU - Awadelkarim, O. O.
PY - 1998
Y1 - 1998
N2 - The study reported herein examines and compares damage to n-channel and p-channel metal-oxide-silicon field-effect transistors (MOSFETs) from direct current (d.c.) and alternating current (a.c.) electrical stresses as well as the relationship of this damage to plasma processing damage in MOS-FETs. The lightly-doped drain (LDD) MOSFETs used are of 0.5 μm channel length and with a 90 Å thick thermally grown gate oxide fabricated using a full flow CMOS process up to and including metal-1 processes and post-metallization annealing (PMA). The damage to MOSFETs is assessed using transistor parameter characterization and charge-to-breakdown measurements on the gate oxide. It is found that manifestations of d.c. stress-induced damage and a.c. stress-induced damage to transistors are fairly similar in that both forms of damage are passivated by PMA and are reactivated by a subsequent d.c. electrical stress. However, a.c. stress-induced damage is observed to occur at much lower electric fields across the gate oxide than those necessary for d.c. stress-induced damage to be significant. This is attributed to a.c. currents, caused by carrier hopping, occurring at relatively low electric fields. One implication of our results is that plasma-charging damage, often attributed to d.c. electrical stress alone, may comprise an a.c. electrical stress component too.
AB - The study reported herein examines and compares damage to n-channel and p-channel metal-oxide-silicon field-effect transistors (MOSFETs) from direct current (d.c.) and alternating current (a.c.) electrical stresses as well as the relationship of this damage to plasma processing damage in MOS-FETs. The lightly-doped drain (LDD) MOSFETs used are of 0.5 μm channel length and with a 90 Å thick thermally grown gate oxide fabricated using a full flow CMOS process up to and including metal-1 processes and post-metallization annealing (PMA). The damage to MOSFETs is assessed using transistor parameter characterization and charge-to-breakdown measurements on the gate oxide. It is found that manifestations of d.c. stress-induced damage and a.c. stress-induced damage to transistors are fairly similar in that both forms of damage are passivated by PMA and are reactivated by a subsequent d.c. electrical stress. However, a.c. stress-induced damage is observed to occur at much lower electric fields across the gate oxide than those necessary for d.c. stress-induced damage to be significant. This is attributed to a.c. currents, caused by carrier hopping, occurring at relatively low electric fields. One implication of our results is that plasma-charging damage, often attributed to d.c. electrical stress alone, may comprise an a.c. electrical stress component too.
UR - http://www.scopus.com/inward/record.url?scp=0032044905&partnerID=8YFLogxK
U2 - 10.1016/S0026-2714(97)00194-7
DO - 10.1016/S0026-2714(97)00194-7
M3 - Article
AN - SCOPUS:0032044905
SN - 0026-2714
VL - 38
SP - 651
EP - 657
JO - Microelectronics Reliability
JF - Microelectronics Reliability
IS - 4
ER -