Crustal melting and continent uplift by mafic underplating at convergent boundaries

Zhipeng Zhou, Hans Thybo*, Irina M. Artemieva*, Timothy Kusky, Chi Chia Tang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The thick crust of the southern Tibetan and central Andean plateaus includes high-conductivity, low-velocity zones ascribed to partial melt. The melt origin and effect on plateau uplift remain speculative, in particular if plateau uplift happens before continental collision. The East Anatolian Plateau (EAP) has experienced similar, more recent uplift but its structure is largely unknown. Here we present an 80 km deep geophysical model across EAP, constrained by seismic receiver functions integrated with interpretation of gravity data and seismic tomographic, magnetotelluric, geothermal, and geochemical models. The results indicate a 20 km thick lower crustal layer and a 10 km thick mid-crustal layer, which both contain pockets of partial melt. We explain plateau uplift by isostatic equilibration following magmatism associated with roll-back and break-off of the Neo-Tethys slab. Our results suggest that crustal thickening by felsic melt and mafic underplate are important for plateau uplift in the EAP, Andes and Tibet.

Original languageEnglish
Article number9039
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'Crustal melting and continent uplift by mafic underplating at convergent boundaries'. Together they form a unique fingerprint.

Cite this