Cosmological models in scale-independent energy-momentum squared gravity

Özgür Akarsu, N. Merve Uzun*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Scale-independent EMSG is a particular model of energy–momentum squared gravity (EMSG) in which the new terms in the Einstein field equations arising from the EMSG theory enter with the same power as the usual terms from Einstein–Hilbert part of the action. However, the model violates the local energy–momentum conservation and matter-current conservation in general and hence, permits a process of matter creation/annihilation in an expanding universe. Consequently, the scale factor dependencies of the energy densities are modified by the dimensionless model parameter α. We revisit some nostalgias such as static universes and de Sitter/steady state universes. We reproduce the original ones, moreover, present some novelties, e.g., a spatially flat static universe, de Sitter expansion by negative vacuum energy, steady state universes in the presence of arbitrary fluids with constant equation of state (EoS) parameter other than dust, etc. We also investigate the possible dynamics of dust dominated and radiation dominated universes. Depending on the value of α, dust/radiation dominated universe exhibits power-law accelerated/decelerated expansion, corresponds to a steady state model or may end in a big rip. In the framework of anisotropic cosmology, we reproduce Barrow's quiescent universe in the presence of stiff fluid and extend it to fluids with arbitrary constant EoS parameter. We also relax the condition for isotropic initial singularity (big bang) owing to that EMSG effectively allows ultra-stiff EoS parameters.

Original languageEnglish
Article number101194
JournalPhysics of the Dark Universe
Volume40
DOIs
Publication statusPublished - May 2023

Bibliographical note

Publisher Copyright:
© 2023 Elsevier B.V.

Keywords

  • Accelerated expansion of the universe
  • Anisotropic expansion
  • Big Rip
  • Cosmological models
  • De Sitter universe
  • Energy-momentum squared gravity
  • Initial singularity
  • Quiescent universe
  • Static universe
  • Steady state universe

Fingerprint

Dive into the research topics of 'Cosmological models in scale-independent energy-momentum squared gravity'. Together they form a unique fingerprint.

Cite this