Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers

Cansu Ulker Turan*, Ayse Metin, Yuksel Guvenilir

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Development of drug delivery systems is an extensively researched area in biomedical field. In recent years, there is an increasing interest on fabrication of biocompatible nanofibrous drug delivery systems. In the present study, poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibrous membranes were fabricated for the controlled delivery and release of tetracycline hydrochloride (TCH) antibiotic. Poly(ω-pentadecalactone-co-ε-caprolactone) content provides an originality to the membrane, since it has been synthesized enzymatically previously. Varied amounts of tetracycline hydrochloride including poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin (1:1, v:v) binary polymer blend was electrospun and characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to investigate the incorporation of drug molecule. Afterwards, in vitro drug release studies were carried out and mathematical modelling was applied to drug release data in order to clarify the transport mechanism of drug. TCH release profile comprised of an initial burst release in first hour and followed by a sustained release through 14 days which allowed sufficient antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. The presented drug delivery system may be applied as an antibacterial wound dressing device for skin infections.

Original languageEnglish
Pages (from-to)59-69
Number of pages11
JournalEuropean Journal of Pharmaceutics and Biopharmaceutics
Volume162
DOIs
Publication statusPublished - May 2021

Bibliographical note

Publisher Copyright:
© 2021 Elsevier B.V.

Funding

This work has been fully supported by Istanbul Technical University, Scientific Research Projects Coordination Department. Project IDs: MDK-2018–41091 and MYL-2019–42361.

FundersFunder number
Istanbul Teknik Üniversitesi

    Keywords

    • Drug delivery
    • Electrospinning
    • Gelatin
    • Tetracycline hydrochloride
    • ε-Caprolactone
    • ω-Pentadecalactone

    Fingerprint

    Dive into the research topics of 'Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers'. Together they form a unique fingerprint.

    Cite this