Comprehensive Multidisciplinary Electric Vehicle Modeling: Investigating the Effect of Vehicle Design on Energy Consumption and Efficiency

Eyyup Aslan, Yusuf Yasa*, Yunus Meseci, Fatma Keskin Arabul, Ahmet Yigit Arabul

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, an electric vehicle (EV) dynamic model is devised that amalgamates mechanical design aspects—such as aerodynamic effects, tire friction, and vehicle frontal area—with crucial components of the electrical infrastructure, including the electric motor, power converters, and battery systems. Verification of the model is executed through a comprehensive multidisciplinary analysis utilizing CATIA, ANSYS Electromagnetics, ANSYS Fluent, and MATLAB–Simulink tools, which are applied to evaluate two alternative lightweight EV prototypes. The process involves initial computations of critical inputs for the dynamic model, including aerodynamic lift (C1), drag coefficients (Cd), and frontal area (Af). Subsequent stages entail the detailed design and analysis of a 2 kW brushless permanent magnet electric motor in ANSYS Electromagnetics to map efficiency contours across various speed–torque values. Integration of these parameters into a MATLAB–Simulink dynamic model, connected with motor drive inverter and battery models, allows for simulation-based energy consumption analysis under race track slope profiles. Remarkably, the findings underscore the considerable impact of neglected parameters on energy consumption, often exceeding fifty percent of the total. Consequently, an energy-efficient EV prototype is manufactured and rigorously tested under specified drive conditions, affirming the validation of the comprehensive multidisciplinary EV dynamic model.

Original languageEnglish
Article number4928
JournalSustainability (Switzerland)
Volume16
Issue number12
DOIs
Publication statusPublished - Jun 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • electric vehicle
  • energy efficiency
  • flow analysis
  • PMSM
  • vehicle design

Fingerprint

Dive into the research topics of 'Comprehensive Multidisciplinary Electric Vehicle Modeling: Investigating the Effect of Vehicle Design on Energy Consumption and Efficiency'. Together they form a unique fingerprint.

Cite this