Comparative Assessment of Pulsar Families using GMM and DPGMM

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Mixture models are frequently employed in astronomical studies to model observed data and interpret results. Gaussian mixture model (GMM) is probably the most widely used one due to its simplicity. To illustrate, GMM had been applied to the pulsar data set in a previous study and discovered six clusters. On the other hand, there are more sophisticated mixture models e.g. Dirichlet process Gaussian mixture model (DPGMM). It is a Bayesian non-parametric model such that it includes prior distributions for model parameters and automatically explores the optimum number of clusters in a data set, in contrast to GMM. In this study, we repeated the application of GMM, and also tested DPGMM as a first time on a larger pulsar data set. It is revealed that there are six clusters in the data set as presented in the former study, according to both GMM and DPGMM. However, the estimated parameters of both models differ from each other. We, then, compared the clustering performance of models with respect to silhouette coefficients. Accordingly, it is observed that DPGMM exhibits better clustering performance. As a further analysis, we compared the classification performance of models. Apparently, DPGMM performs, once again, better than GMM in discriminating selected pulsar families.

Original languageEnglish
Title of host publicationUBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages318-323
Number of pages6
ISBN (Electronic)9781728139647
DOIs
Publication statusPublished - Sept 2019
Event4th International Conference on Computer Science and Engineering, UBMK 2019 - Samsun, Turkey
Duration: 11 Sept 201915 Sept 2019

Publication series

NameUBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering

Conference

Conference4th International Conference on Computer Science and Engineering, UBMK 2019
Country/TerritoryTurkey
CitySamsun
Period11/09/1915/09/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • DPGMM
  • GMM
  • machine learning
  • mixture models
  • pulsars

Fingerprint

Dive into the research topics of 'Comparative Assessment of Pulsar Families using GMM and DPGMM'. Together they form a unique fingerprint.

Cite this