Abstract
A convolutional neural network (CNN)-based deep learning (DL) technique for electromagnetic (EM) imaging of rough surfaces separating two dielectric media is presented. The direct scattering problem is formulated through the conventional integral equations, and the synthetic scattered field data are produced by a fast numerical solution technique, which is based on method of moments (MoM). Two different special CNN architectures are designed and implemented for the solution of the inverse rough surface imaging problem, wherein both random and deterministic rough surface profiles can be imaged. It is shown by a comprehensive numerical analysis that the proposed DL inversion scheme is very effective and robust.
Original language | English |
---|---|
Pages (from-to) | 9752-9763 |
Number of pages | 12 |
Journal | IEEE Transactions on Antennas and Propagation |
Volume | 70 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1 Oct 2022 |
Bibliographical note
Publisher Copyright:© 1963-2012 IEEE.
Keywords
- Convolutional neural network (CNN)
- deep learning (DL)
- electromagnetics (EMs)
- inverse scattering problems
- rough surface imaging