Abstract
Chitin in the compound eyes of arthropods serves as a part of the visual system. The quality of chitin in such highly specialised body parts deserves more detailed examination. Chitin in the corneal (ommatidial) lenses of dragonfly (Sympetrum fonscolombii) compound eyes was isolated by using the classical chemical method. The chitin content of the corneal lenses was determined to be quite high (20.3 ± 0.85%). The FT-IR analysis showed that corneal lens chitin was in the α-form as found in all arthropod species where mechanical strength is required. The surface morphology analysis by scanning electron microscopy revealed that the outer part of corneal lenses consisted of long chitin fibrils with regular arrays of papillary structures while the smoother inner part had concentric lamellated chitin formation with shorter chitin nanofibrils. Chitinase enzymatic digestion studies, elemental analysis results and the degree of acetylation value showed the purity of chitin samples from corneal lens. The maximum degradation temperature value of the corneal lens chitin was observed at 369.2 °C. X-ray analysis revealed that corneal lens chitin has high crystallinity index; 96.4%. Identification of chitin found in ommaditia of insect compound eyes can provide insights into insect vision and chitin-based optical material design studies.
Original language | English |
---|---|
Pages (from-to) | 54-61 |
Number of pages | 8 |
Journal | International Journal of Biological Macromolecules |
Volume | 89 |
DOIs | |
Publication status | Published - 1 Aug 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Elsevier B.V.
Keywords
- Compound eyes
- Insect vision
- Ommatidium