Abstract
The terahertz (THz) band radio access with larger available bandwidth is anticipated to provide higher capacities for next-generation wireless communication systems. However, higher path loss at THz frequencies significantly limits the wireless communication range. Massive multiple-input multiple-output (mMIMO) is an attractive technology to increase the Rayleigh distance by generating higher gain beams using low wavelength and highly directive antenna array aperture. In addition, both far-field and near-field components of the antenna system should be considered for modeling THz electromagnetic propagation, where the channel estimation for this environment becomes a challenging task. This paper proposes a novel channel estimation method using a real image denoising network (RIDNet) and orthogonal matching pursuit (OMP) for hybrid-field THz mMIMO channels, including far-field and near-field constituents. The simulation experiments are performed using the ray-tracing tool. The results demonstrate that the proposed RIDNet-based method consistently provides lower channel estimation errors than the conventional OMP algorithm for all signal-to-noise ratio (SNR) regions. The performance gap becomes higher at low SNR regimes. Furthermore, the results imply that the same error performance of the OMP can be achieved by the RIDNet-based method using a lower number of RF chains and pilot symbols.
Original language | English |
---|---|
Title of host publication | ICC 2023 - IEEE International Conference on Communications |
Subtitle of host publication | Sustainable Communications for Renaissance |
Editors | Michele Zorzi, Meixia Tao, Walid Saad |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2625-2630 |
Number of pages | 6 |
ISBN (Electronic) | 9781538674628 |
DOIs | |
Publication status | Published - 2023 |
Externally published | Yes |
Event | 2023 IEEE International Conference on Communications, ICC 2023 - Rome, Italy Duration: 28 May 2023 → 1 Jun 2023 |
Publication series
Name | IEEE International Conference on Communications |
---|---|
Volume | 2023-May |
ISSN (Print) | 1550-3607 |
Conference
Conference | 2023 IEEE International Conference on Communications, ICC 2023 |
---|---|
Country/Territory | Italy |
City | Rome |
Period | 28/05/23 → 1/06/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Funding
ACKNOWLEDGMENT This publication was made possible in parts by NPRP13S-0130-200200 and NPRP14C-0909-210008 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors. The statements made herein are solely the responsibility of the authors. We thank to StorAIge project that has received funding from the KDT Joint Undertaking (JU) under Grant Agreement No. 101007321. The JU receives support from the European Union’s Horizon 2020 research and innovation programme in France, Belgium, Czech Republic, Germany, Italy, Sweden, Switzerland, Türkiye, and National Authority TÜB˙TAK with project ID 121N350.
Funders | Funder number |
---|---|
National Authority TÜB˙TAK | 121N350 |
Qatar National Research Fund | 101007321 |
Horizon 2020 Framework Programme |
Keywords
- RIDNet
- hybrid-field channel
- massive MIMO
- spectral efficiency
- terahertz