TY - JOUR
T1 - Cerium-Doped CuFe-Layered Catalyst for the Enhanced Oxidation of o-Xylene and N,N-Dimethylacetamide
T2 - Insights into the Effects of Temperature and Space Velocity
AU - Ocal, Zehra Betul
AU - Keyikoglu, Ramazan
AU - Karagunduz, Ahmet
AU - Yoon, Yeojoon
AU - Khataee, Alireza
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society
PY - 2023/12/5
Y1 - 2023/12/5
N2 - Volatile organic compounds (VOCs) are among the most potential pollutant groups that cause air quality degradation because of their toxic effects on human health. Although catalytic oxidation is an effective method for VOC removal, further studies are required to develop more efficient and affordable catalysts. In this study, cerium (Ce) was doped into a CuFe-layered material (Ce-CuFe) to improve the catalytic oxidation efficiencies of N,N-dimethylacetamide (DMAC) and o-xylene. The synthesized catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis confirmed the successful doping of Ce atoms into the CuFe-layered structure, while in the SEM and TEM images the catalyst appeared as uniformly distributed two-dimensional plate-like particles. The catalytic oxidation performance of the Ce-CuFe was investigated at six temperatures between 200 and 450 °C and three space velocities in the range of 31000-155000 mLh-1g-1 for the oxidation of DMAC and o-xylene, which functioned as polar and nonpolar solvents, respectively. At 200 °C, the Ce-CuFe catalyst performed 50% greater when oxidizing o-xylene while exhibiting a DMAC oxidation efficiency that was 42% greater than that achieved using undoped CuFe. The Ce-CuFe could remove DMAC and o-xylene with an efficiency higher than 95% at 450 °C. Furthermore, Ce-doped CuFe exhibited high resistance against moisture and outstanding reusability performance with only a 5.6% efficiency loss after nine reuse cycles. Overall, the incorporation of Ce into a CuFe-layered material is a promising strategy for the oxidation of various VOCs.
AB - Volatile organic compounds (VOCs) are among the most potential pollutant groups that cause air quality degradation because of their toxic effects on human health. Although catalytic oxidation is an effective method for VOC removal, further studies are required to develop more efficient and affordable catalysts. In this study, cerium (Ce) was doped into a CuFe-layered material (Ce-CuFe) to improve the catalytic oxidation efficiencies of N,N-dimethylacetamide (DMAC) and o-xylene. The synthesized catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis confirmed the successful doping of Ce atoms into the CuFe-layered structure, while in the SEM and TEM images the catalyst appeared as uniformly distributed two-dimensional plate-like particles. The catalytic oxidation performance of the Ce-CuFe was investigated at six temperatures between 200 and 450 °C and three space velocities in the range of 31000-155000 mLh-1g-1 for the oxidation of DMAC and o-xylene, which functioned as polar and nonpolar solvents, respectively. At 200 °C, the Ce-CuFe catalyst performed 50% greater when oxidizing o-xylene while exhibiting a DMAC oxidation efficiency that was 42% greater than that achieved using undoped CuFe. The Ce-CuFe could remove DMAC and o-xylene with an efficiency higher than 95% at 450 °C. Furthermore, Ce-doped CuFe exhibited high resistance against moisture and outstanding reusability performance with only a 5.6% efficiency loss after nine reuse cycles. Overall, the incorporation of Ce into a CuFe-layered material is a promising strategy for the oxidation of various VOCs.
UR - http://www.scopus.com/inward/record.url?scp=85179152331&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c05175
DO - 10.1021/acsomega.3c05175
M3 - Article
AN - SCOPUS:85179152331
SN - 2470-1343
VL - 8
SP - 45474
EP - 45482
JO - ACS Omega
JF - ACS Omega
IS - 48
ER -