Cerium-Doped CuFe-Layered Catalyst for the Enhanced Oxidation of o-Xylene and N,N-Dimethylacetamide: Insights into the Effects of Temperature and Space Velocity

Zehra Betul Ocal, Ramazan Keyikoglu, Ahmet Karagunduz*, Yeojoon Yoon, Alireza Khataee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Volatile organic compounds (VOCs) are among the most potential pollutant groups that cause air quality degradation because of their toxic effects on human health. Although catalytic oxidation is an effective method for VOC removal, further studies are required to develop more efficient and affordable catalysts. In this study, cerium (Ce) was doped into a CuFe-layered material (Ce-CuFe) to improve the catalytic oxidation efficiencies of N,N-dimethylacetamide (DMAC) and o-xylene. The synthesized catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis confirmed the successful doping of Ce atoms into the CuFe-layered structure, while in the SEM and TEM images the catalyst appeared as uniformly distributed two-dimensional plate-like particles. The catalytic oxidation performance of the Ce-CuFe was investigated at six temperatures between 200 and 450 °C and three space velocities in the range of 31000-155000 mLh-1g-1 for the oxidation of DMAC and o-xylene, which functioned as polar and nonpolar solvents, respectively. At 200 °C, the Ce-CuFe catalyst performed 50% greater when oxidizing o-xylene while exhibiting a DMAC oxidation efficiency that was 42% greater than that achieved using undoped CuFe. The Ce-CuFe could remove DMAC and o-xylene with an efficiency higher than 95% at 450 °C. Furthermore, Ce-doped CuFe exhibited high resistance against moisture and outstanding reusability performance with only a 5.6% efficiency loss after nine reuse cycles. Overall, the incorporation of Ce into a CuFe-layered material is a promising strategy for the oxidation of various VOCs.

Original languageEnglish
Pages (from-to)45474-45482
Number of pages9
JournalACS Omega
Volume8
Issue number48
DOIs
Publication statusPublished - 5 Dec 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society

Fingerprint

Dive into the research topics of 'Cerium-Doped CuFe-Layered Catalyst for the Enhanced Oxidation of o-Xylene and N,N-Dimethylacetamide: Insights into the Effects of Temperature and Space Velocity'. Together they form a unique fingerprint.

Cite this