TY - JOUR
T1 - Canonical operators and the optimal concentration of three-qubit Greenberger-Horne-Zeilinger states
AU - Torun, Gokhan
AU - Yildiz, Ali
PY - 2014/3/12
Y1 - 2014/3/12
N2 - It is well known that quantum states that can be transformed into each other by local unitary transformations are equal from the information theoretic point of view. This defines equivalence classes of states and allows one to write any state with the minimal number of parameters called the canonical form of the state. We define the equivalence classes of local measurements such that local operations which transform states from one equivalence class into another with the same probability are equivalent. This equivalence relation allows one to write the operators with the minimal number of parameters, which we call canonical operators, and hence the use of the canonical operators simplifies the optimal manipulation of quantum states. We use the canonical local operators for the concentration of three-qubit Greenberger-Horne-Zeilinger states and obtain the optimal concentration protocols in terms of the unitary invariants of quantum states, namely, the bipartite concurrences and the three-tangle.
AB - It is well known that quantum states that can be transformed into each other by local unitary transformations are equal from the information theoretic point of view. This defines equivalence classes of states and allows one to write any state with the minimal number of parameters called the canonical form of the state. We define the equivalence classes of local measurements such that local operations which transform states from one equivalence class into another with the same probability are equivalent. This equivalence relation allows one to write the operators with the minimal number of parameters, which we call canonical operators, and hence the use of the canonical operators simplifies the optimal manipulation of quantum states. We use the canonical local operators for the concentration of three-qubit Greenberger-Horne-Zeilinger states and obtain the optimal concentration protocols in terms of the unitary invariants of quantum states, namely, the bipartite concurrences and the three-tangle.
UR - http://www.scopus.com/inward/record.url?scp=84897905293&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.89.032320
DO - 10.1103/PhysRevA.89.032320
M3 - Article
AN - SCOPUS:84897905293
SN - 1050-2947
VL - 89
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 3
M1 - 032320
ER -