Building in Extraterrestrial Environments: T-Brick Shell

Sevil Yazici*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Space exploration focuses on new technologies to search the unknown. It has been used to investigate possibilities for the creation of human colonies in extraterrestrial environments. Current projects concerning space architecture reflect two perspectives that differ from highly rationalized engineering solutions in that they are highly conceptual and abstract approaches. Although implemented for extraterrestrial environments, new technologies do not offer a comprehensive approach from an architecture perspective that can be implemented for different design and programmatic purposes by the use of in situ materials on Mars. This paper aims to propose a comprehensive approach in which the form generation process is driven by environmental conditions, specifically the dune fields on Mars. A set of architectural geometry, described computationally, can respond to different spatial conditions, such as shell structures, from fully enclosed to semiopen surfaces. In this approach, in situ materials are used with robotic fabrication; more specifically, three-dimensional (3D) printing is used on Martian land. A material system, which creates a titanium-dioxide-based shielding layer, was developed against high radiation levels on the Martian surface. The interconnected structural modules were considered similar to the brick material called T-brick. The system was assessed structurally by selecting an enclosed geometry: a dome structure. Hence, the efficiency factor was calculated. The results proved that the proposed T-brick shell is an efficient solution considering the payload constraints of the system. The method can be potentially implemented on Earth and extraterrestrial environments in addition to Mars.

Original languageEnglish
Article number04017037
JournalJournal of Architectural Engineering
Volume24
Issue number1
DOIs
Publication statusPublished - 1 Mar 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 American Society of Civil Engineers.

Keywords

  • Architectural geometry
  • Computational design
  • Extraterrestrial environments
  • Form generation
  • Performance assessment
  • Space architecture

Fingerprint

Dive into the research topics of 'Building in Extraterrestrial Environments: T-Brick Shell'. Together they form a unique fingerprint.

Cite this