Building A Non-Personalized Recommender System by Learning Product and Basket Representation

Savas Yildirim, Sebnem Gunes Soyler, Ozgur Akarsu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

In this paper, we addressed the problem of learning product and basket representation for a non-personalized recommendation system where the baskets do not have a specific owner. The recommendation models tend to exploit as much information as possible along with basket patterns to improve performance. We focus on the representation problem for the baskets without any customer information. Deep learning-based architectures have solved many representation problems such as natural language processing (NLP) and computer vision (CV) so far. While the NLP model takes a bag of words as input, the recommendation models take a basket of products as input. The learning algorithm uses co-occurrence information and therefore exploits the idea that the things that appear in a similar environment share similar meaning. But traditional representation approaches such as one-hot encoding have dimensionality problems when the number of entities increases. On the other hand, neural models can solve this dimensionality curse and transform each entity into a short and dense vector, namely embeddings. We successfully designed unsupervised and super-vised architectures to solve the product and basket embeddings for a recommendation engine. Our experiments show that the proposed deep learning architecture showed better performance than baseline approaches in terms of many metrics. We also discussed and addressed many product representation related problems throughout the paper.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
EditorsXintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4450-4455
Number of pages6
ISBN (Electronic)9781728162515
DOIs
Publication statusPublished - 10 Dec 2020
Externally publishedYes
Event8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States
Duration: 10 Dec 202013 Dec 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020

Conference

Conference8th IEEE International Conference on Big Data, Big Data 2020
Country/TerritoryUnited States
CityVirtual, Atlanta
Period10/12/2013/12/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • deep learning
  • recommendation systems
  • representation learning

Fingerprint

Dive into the research topics of 'Building A Non-Personalized Recommender System by Learning Product and Basket Representation'. Together they form a unique fingerprint.

Cite this