Abstract
In this paper, a new approach based on Binary Black Hole Algorithm (BBHA) and Adaptive Boosting version Ml (AdaboostM1) is proposed for finding genes that can classify the group of cancers correctly. In this approach, BBHA is used to perform gene selection and AdaboostM1 with 10-fold cross validation is adopted as the classifier. Also, to find the relation between the biomarkers for biological point of view, decision tree algorithm (C4.5) is utilized. The proposed approach is tested on three benchmark microarrays. The experimental results show that our proposed method can select the most informative gene subsets by reducing the dimension of the data set and improve classification accuracy as compared to several recent studies.
Original language | English |
---|---|
Title of host publication | 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3080-3083 |
Number of pages | 4 |
ISBN (Electronic) | 9781457702204 |
DOIs | |
Publication status | Published - 13 Oct 2016 |
Externally published | Yes |
Event | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States Duration: 16 Aug 2016 → 20 Aug 2016 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
Volume | 2016-October |
ISSN (Print) | 1557-170X |
Conference
Conference | 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 |
---|---|
Country/Territory | United States |
City | Orlando |
Period | 16/08/16 → 20/08/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- AdaboostM1
- Binary black hole algorithm
- Cancer classification
- Gene selection