Big Bang Big Crunch based Near-Optimal Guidance Law for Interceptor Problem

Arunava Banerjee, Mashuq Un Nabi, Tufan Kumbasar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

This paper proposes a time-energy near-optimal guidance law for missile-target engagement scenarios. The guidance law uses a nature inspired meta-heuristic optimization algorithm. The classical pure proportional navigation (PPN) guidance law is augmented with a polynomial function of heading error and the parameters of this guidance law are optimally tuned using Big-Bang Big-Crunch (BBBC) algorithm. The pro-posed BBBC tuned all aspect proportional navigation (BBBCPN) guidance law tackles the primary requirement of interception of the target and is also time-energy efficient. Along with initial high heading error, a constraint on the lateral acceleration of the missile is also considered. These two conditions are included to make the guidance problem more realistic and challenging. The proposed guidance law is compared with other standard guidance laws which establishes its effectiveness.

Original languageEnglish
Title of host publicationELECO 2019 - 11th International Conference on Electrical and Electronics Engineering
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages790-794
Number of pages5
ISBN (Electronic)9786050112757
DOIs
Publication statusPublished - Nov 2019
Event11th International Conference on Electrical and Electronics Engineering, ELECO 2019 - Bursa, Turkey
Duration: 28 Nov 201930 Nov 2019

Publication series

NameELECO 2019 - 11th International Conference on Electrical and Electronics Engineering

Conference

Conference11th International Conference on Electrical and Electronics Engineering, ELECO 2019
Country/TerritoryTurkey
CityBursa
Period28/11/1930/11/19

Bibliographical note

Publisher Copyright:
© 2019 Chamber of Turkish Electrical Engineers.

Keywords

  • Big-Bang Big-Crunch
  • Guidance Law
  • Interceptor Model
  • Optimization

Fingerprint

Dive into the research topics of 'Big Bang Big Crunch based Near-Optimal Guidance Law for Interceptor Problem'. Together they form a unique fingerprint.

Cite this