Abstract
In this paper, we consider biconservative and biharmonic isometric immersions into the 4-dimensional Lorentzian space form L4(δ) with constant sectional curvature δ. We obtain some local classifications of biconservative CMC surfaces in L4(δ). Further, we get complete classification of biharmonic CMC surfaces in the de Sitter 4-space. We also proved that there is no biharmonic CMC surface in the anti-de Sitter 4-space. Further, we get the classification of biconservative, quasi-minimal surfaces in Minkowski-4 space.
Original language | English |
---|---|
Pages (from-to) | 19-31 |
Number of pages | 13 |
Journal | Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg |
Volume | 94 |
Issue number | 1 |
DOIs | |
Publication status | Published - Apr 2024 |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive licence to Mathematisches Seminar der Universität Hamburg 2024.
Keywords
- Biconservative surfaces
- Constant mean curvature
- Lorentzian space forms
- Quasi-minimal surfaces
- de Sitter space