Abstract
Super-resolution (SR) has traditionally been based on pairs of high-resolution images (HR) and their low-resolution (LR) counterparts obtained artificially with bicubic downsampling. However, in real-world SR, there is a large variety of realistic image degradations and analytically modeling these realistic degradations can prove quite difficult. In this work, we propose to handle real-world SR by splitting this ill-posed problem into two comparatively more well-posed steps. First, we train a network to transform real LR images to the space of bicubically down-sampled images in a supervised manner, by using both real LR/HR pairs and synthetic pairs. Second, we take a generic SR network trained on bicubically downsampled images to super-resolve the transformed LR image. The first step of the pipeline addresses the problem by registering the large variety of degraded images to a common, well understood space of images. The second step then leverages the already impressive performance of SR on bicubically downsampled images, sidestepping the issues of end-to-end training on datasets with many different image degradations. We demonstrate the effectiveness of our proposed method by comparing it to recent methods in real-world SR and show that our proposed approach outperforms the state-of-the-art works in terms of both qualitative and quantitative results, as well as results of an extensive user study conducted on several real image datasets.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1589-1598 |
Number of pages | 10 |
ISBN (Electronic) | 9780738142661 |
DOIs | |
Publication status | Published - Jan 2021 |
Externally published | Yes |
Event | 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 - Virtual, Online, United States Duration: 5 Jan 2021 → 9 Jan 2021 |
Publication series
Name | Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 |
---|
Conference
Conference | 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 5/01/21 → 9/01/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.