Benchmarking of hydroelectric stochastic risk management models using financial indicators

N. A. Iliadis*, M. V.F. Pereira, S. Granville, M. Finger, P. A. Haldi, L. A. Barroso

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

The objective of this paper is to present the operating and hedging analysis of a hydroelectric system in a non-hydro dominated market using a specifically-developed tool for operating and contracting decisions. Hydropower companies are likely to face stochastic inflows, spot prices, and forward prices, during their operation. The objective of the tool is to maximize expected revenues from spot and forward market trading, considering suitable indicators of the company risk aversion. We benchmark the implemented risk indicator of required Minimum Revenues in the optimization tool using financial risk indicators, such as Value at Risk, Conditional Value at Risk, and the Risk Premium of a Utility function. This portfolio management problem, which includes physical and financial assets, is formulated as a stochastic revenue maximization problem under a specified risk aversion constraint. The company risk aversion is apprehended by penalizing reservoir operation and derivative instruments contracting decisions policies that lead to financial performances that are violating the required Minimum Revenues at the end of a predefined profit period. A hybrid Stochastic Dynamic Programming (SDP) / Stochastic Dual Dynamic Programming (SDDP) formulation is adopted to solve this large-scale optimization problem.

Original languageEnglish
Title of host publication2006 IEEE Power Engineering Society General Meeting, PES
PublisherIEEE Computer Society
ISBN (Print)1424404932, 9781424404933
DOIs
Publication statusPublished - 2006
Externally publishedYes
Event2006 IEEE Power Engineering Society General Meeting, PES - Montreal, QC, Canada
Duration: 18 Jun 200622 Jun 2006

Publication series

Name2006 IEEE Power Engineering Society General Meeting, PES

Conference

Conference2006 IEEE Power Engineering Society General Meeting, PES
Country/TerritoryCanada
CityMontreal, QC
Period18/06/0622/06/06

Keywords

  • CvaR
  • Dynamic programming
  • Electricity financial risk indicators
  • Hydropower
  • Portfolio management
  • Stochastic optimization
  • Utility function and VaR

Fingerprint

Dive into the research topics of 'Benchmarking of hydroelectric stochastic risk management models using financial indicators'. Together they form a unique fingerprint.

Cite this