Bayesian joint modeling of patient-reported longitudinal data on frequency and duration of migraine

Gül İnan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this methodological study, we address the joint modeling of longitudinal data on the frequency and duration migraine attacks collected from patients in a clinical study in which patients were repeatedly asked at each hospital visit to report the number of days of migraine attacks they had in the last 30 days and the corresponding average duration of attacks. In our motivating data set, the migraine frequency outcome is a count variable inflated at multiples of 5 and 10 days, whereas the migraine duration outcome is reported entirely in discrete hours, including 0 for non-migraine days and inflated at multiples of 12 hours. In our study, we propose a joint modeling approach that models each migraine outcome by a multiple inflated negative binomial model with random effects and assumes a bivariate normal distribution for the random effects. We estimate the model parameters under Bayesian inference. We examine the performance of the proposed joint model using a Monte Carlo simulation study and compare its performance with a separate modeling approach in which each longitudinal count outcome is modeled separately. Finally, we present the results of the analysis of migraine data.

Original languageEnglish
Pages (from-to)795-807
Number of pages13
JournalHacettepe Journal of Mathematics and Statistics
Volume52
Issue number3
DOIs
Publication statusPublished - 30 May 2023

Bibliographical note

Publisher Copyright:
© 2023, Hacettepe University. All rights reserved.

Keywords

  • Count outcomes
  • migraine days
  • migraine duration
  • multiple inflation
  • self-reported outcomes

Fingerprint

Dive into the research topics of 'Bayesian joint modeling of patient-reported longitudinal data on frequency and duration of migraine'. Together they form a unique fingerprint.

Cite this