Bag-1-mediated HSF1 phosphorylation regulates expression of heat shock proteins in breast cancer cells

Tugba Kizilboga, Can Özden, Nisan Denizce Can, Evren Onay Ucar, Gizem Dinler Doganay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl-2-associated athanogene (Bag)-1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag-1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor-1 (HSF1)-dependent survival of breast cancer cells. HER2-negative (MCF-7) and HER2-positive (BT-474) cell lines were used to examine the impact of Bag-1 expression on HSF1 and HSPs. We demonstrated that Bag-1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1–HSP axis. The activation of HSP results in the stabilization of several tumor-promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag-1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.

Original languageEnglish
JournalFEBS Open Bio
DOIs
Publication statusAccepted/In press - 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s). FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Keywords

  • Bag-1
  • HER2
  • HSF1
  • breast cancer
  • chaperones

Fingerprint

Dive into the research topics of 'Bag-1-mediated HSF1 phosphorylation regulates expression of heat shock proteins in breast cancer cells'. Together they form a unique fingerprint.

Cite this