Abstract
This study aims to compare classification accuracies of land cover/use maps created from Sentinel-2 and Landsat-8 data. Istanbul metropolitan city of Turkey, with a population of around 14 million, having different landscape characteristics was selected as study area. Water, forest, agricultural areas, grasslands, transport network, urban, airport-industrial units and barren land-mine land cover/use classes adapted from CORINE nomenclature were used as main land cover/use classes to identify. To fulfil the aims of this research, recently acquired dated 08/02/2016 Sentinel-2 and dated 22/02/2016 Landsat-8 images of Istanbul were obtained and image pre-processing steps like atmospheric and geometric correction were employed. Both Sentinel-2 and Landsat-8 images were resampled to 30m pixel size after geometric correction and similar spectral bands for both satellites were selected to create a similar base for these multi-sensor data. Maximum Likelihood (MLC) and Support Vector Machine (SVM) supervised classification methods were applied to both data sets to accurately identify eight different land cover/use classes. Error matrix was created using same reference points for Sentinel-2 and Landsat-8 classifications. After the classification accuracy, results were compared to find out the best approach to create current land cover/use map of the region. The results of MLC and SVM classification methods were compared for both images.
| Original language | English |
|---|---|
| Pages (from-to) | 1055-1059 |
| Number of pages | 5 |
| Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
| Volume | 41 |
| DOIs | |
| Publication status | Published - 2016 |
| Event | 23rd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, ISPRS 2016 - Prague, Czech Republic Duration: 12 Jul 2016 → 19 Jul 2016 |
Keywords
- Land cover/use mapping
- Landsat-8
- Remote sensing
- Sentinel-2
- Supervised classification