Assessment of bone healing using (Ti,Mg)N thin film coated plates and screws: Rabbit femur model

Kenda Sabouni, Yetkin Ozturk, Erkan Kacar, Hasan Serdar Mutlu, Seyhun Solakoglu, Gamze Torun Kose, Fatma Nese Kok, Muhammet Kursat Kazmanli, Kamil Mustafa Urgen, Sakip Onder*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Magnesium (Mg) based implants such as plates and screws are often preferred to treat bone defects because of the positive effects of magnesium in bone growth and healing. Their low corrosion resistance, however, leads to fast degradation and consequently failure before healing was completed. Previously, we developed Mg doped titanium nitrate (TiN) thin film coatings to address these limitations and demonstrated that <10 at% Mg doping led to enhanced mineralization in vitro. In the present study, in vivo performance of (Ti,Mg)N coated Ti6Al4V based plates and screws were studied in the rabbit model. Bone fractures were formed on femurs of 16 rabbits and then fixed with either (Ti,Mg)N coated (n = 8) or standard TiN coated (n = 8) plates and screws. X-ray imaging and μCT analyses showed enhanced bone regeneration on fracture sites fixed with (Ti,Mg)N coated plates in comparison with the Mg free ones. Bone mineral density, bone volume, and callus volume were also found to be 11.4, 23.4, and 42.8% higher, respectively, in accordance with μCT results. Furthermore, while TiN coatings promoted only primary bone regeneration, (Ti,Mg)N led to secondary bone regeneration in 6 weeks. These results indicated that Mg presence in the coatings accelerated bone regeneration in the fracture site. (Ti,Mg)N coating can be used as a practical method to increase the efficiency of existing bone fixation devices of varying geometry.

Original languageEnglish
Pages (from-to)227-237
Number of pages11
JournalJournal of Biomedical Materials Research - Part B Applied Biomaterials
Volume109
Issue number2
DOIs
Publication statusPublished - Feb 2021

Bibliographical note

Publisher Copyright:
© 2020 Wiley Periodicals LLC.

Keywords

  • bone defect
  • bone healing
  • fixation devices
  • magnesium
  • thin film coating

Fingerprint

Dive into the research topics of 'Assessment of bone healing using (Ti,Mg)N thin film coated plates and screws: Rabbit femur model'. Together they form a unique fingerprint.

Cite this