Assessing the impact of CMIP5 climate multi-modeling on estimating the precipitation seasonality and timing

Mehmet C. Demirel*, Hamid Moradkhani

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


This paper investigates the effect of a Bayesian Model Averaging (BMA) method on simulated precipitation over the Columbia River Basin using two statistically downscaled climate datasets, i.e., Bias-Correction Spatial Disaggregation (BCSD) and Multivariate Adaptive Constructed Analogs (MACA). To this end daily observed and simulated precipitation are used to calculate different indices focusing solely on seasonality, event-timing, and variability in timing (persistence) of the precipitation. The climate model weights are estimated for each cell (6 × 6 km) of the Columbia River Basin using daily time series for the historical period 1970–1999 from the ten Global Climate Models (GCMs) participating to the Coupled Model Intercomparison Project platform, Phase 5. The results show that BMA results in more than 15 % improvement/reduction in mean absolute error as compared to the individual GCMs. The improvement is, in general, higher for the MACA models than for the BCSD models. The results of variability in precipitation timing show that extreme precipitation events are mostly not persistent (i.e., occurring in different periods throughout the year), i.e., more than 75 % of the grid cells with an elevation above 900 m indicate persistence values less than 0.2 whereas nearly 70 % of the high elevation cells indicate such low persistence. Further we find that the variability in persistence is higher in high elevation cells than those with low elevation. The picture is different for MACA ensembles as the simulated persistence of extreme precipitation events is higher than that for the observed and BCSD datasets.

Original languageEnglish
Pages (from-to)357-372
Number of pages16
JournalClimatic Change
Issue number2
Publication statusPublished - 1 Mar 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015, Springer Science+Business Media Dordrecht.


Partial financial support for this study was provided by the DOE-BPA (cooperative agreement 00063182) and also Institute for Sustainable Solution at Portland State University.

FundersFunder number
Portland State University


    Dive into the research topics of 'Assessing the impact of CMIP5 climate multi-modeling on estimating the precipitation seasonality and timing'. Together they form a unique fingerprint.

    Cite this