Abstract
Presented herein is the free vibration analysis of functionally graded beams (FGMs) via higher-order shear deformation theory and an artificial neural network method (ANN). The transverse displacement (w) is expressed as bending (wb) and shear (ws) components to define the deformation of the beam. The higher-order variation of the transverse shear strains is accounted for through the thickness direction of the FGM beam, and satisfies boundary conditions. The governing equations are derived with the help of Hamilton’s principle. Non-dimensional frequencies are obtained using Navier’s solution. To validate and enrich the proposed research, an artificial neural network method (ANN) was developed in order to predict the dimensionless frequencies. Material properties and previous studies were used to generate the ANN dataset. The obtained frequency values from the analytical solution and ANN method were compared and discussed with respect to the mean error. In conclusion, the solutions were demonstrated for various deformation theories, and all of the results were thereupon tabularized and visualized using 2D and 3D plots.
Original language | English |
---|---|
Article number | 217 |
Journal | Applied Sciences (Switzerland) |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2024 |
Bibliographical note
Publisher Copyright:© 2023 by the authors.
Keywords
- artificial neural network
- composite beam
- free vibration
- functionally graded material