TY - JOUR
T1 - Application of cobalt-cerium-iron ternary layered double hydroxide for extraction of perfluorooctane sulfonate followed by HPLC-MS/MS analysis
AU - Arefi-Oskoui, Samira
AU - Khataee, Alireza
AU - Marzi Khosrowshahi, Elnaz
AU - Kudaibergenov, Nurbolat
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - Herein, Ce-doped CoFe layered double hydroxide (LDH), noted as CoCeFe ternary LDH, was prepared using the co-precipitation route. Prosperous synthesis of CoFe LDH and successful partial replacement of iron cations with cerium cations in CoCeFe ternary LDH were confirmed by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, and elemental dot-mapping images. Nanosheet morphology was recognized for both CoFe LDH and CoCeFe ternary LDH from scanning electron microscopy and transmission electron microscopy micrographs. In the following, a dispersive solid phase extraction (DSPE) method was developed using the synthesized CoCeFe ternary LDH as a sorbent for extracting perfluorooctanesulfonic acid (PFOS) from wastewater samples. For the selective analysis of PFOS, high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) in multiple reaction monitoring mode was used. Analytical parameters such as the limit of detection equal to 0.02 μg/L, with a linear range of 0.05–300 μg/L, the limit of quantification equal to 0.05 μg/L, and an enrichment factor equal to 23.3 were achieved for PFOS at the optimized condition (sorbent: 5 mg of CoCeFe ternary LDH, eluent type and volume: 150 μL mobile phase, pH: 3, adsorption time: 3 min, and desorption time: 5 min). The developed strategy for the analysis of PFOS was tested in real wastewater samples, including copper mine and petrochemical wastewater. The amount of analytes in real samples was calculated using the standard addition method, and good relative recovery in the range of 86%–105% was obtained. The main novelty of this research is the application of CoCeFe ternary LDH to extract the PFOS from wastewater using the DSPE method for determination by HPLC-MS/MS.
AB - Herein, Ce-doped CoFe layered double hydroxide (LDH), noted as CoCeFe ternary LDH, was prepared using the co-precipitation route. Prosperous synthesis of CoFe LDH and successful partial replacement of iron cations with cerium cations in CoCeFe ternary LDH were confirmed by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, and elemental dot-mapping images. Nanosheet morphology was recognized for both CoFe LDH and CoCeFe ternary LDH from scanning electron microscopy and transmission electron microscopy micrographs. In the following, a dispersive solid phase extraction (DSPE) method was developed using the synthesized CoCeFe ternary LDH as a sorbent for extracting perfluorooctanesulfonic acid (PFOS) from wastewater samples. For the selective analysis of PFOS, high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) in multiple reaction monitoring mode was used. Analytical parameters such as the limit of detection equal to 0.02 μg/L, with a linear range of 0.05–300 μg/L, the limit of quantification equal to 0.05 μg/L, and an enrichment factor equal to 23.3 were achieved for PFOS at the optimized condition (sorbent: 5 mg of CoCeFe ternary LDH, eluent type and volume: 150 μL mobile phase, pH: 3, adsorption time: 3 min, and desorption time: 5 min). The developed strategy for the analysis of PFOS was tested in real wastewater samples, including copper mine and petrochemical wastewater. The amount of analytes in real samples was calculated using the standard addition method, and good relative recovery in the range of 86%–105% was obtained. The main novelty of this research is the application of CoCeFe ternary LDH to extract the PFOS from wastewater using the DSPE method for determination by HPLC-MS/MS.
KW - Dispersive solid phase extraction
KW - Hydrotalcite-like material
KW - Poly fluoroalkyl substances
KW - Real wastewater
KW - Ternary layered double hydroxides
KW - Two-dimensional material
UR - http://www.scopus.com/inward/record.url?scp=85190515684&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2024.118838
DO - 10.1016/j.envres.2024.118838
M3 - Article
C2 - 38570124
AN - SCOPUS:85190515684
SN - 0013-9351
VL - 252
JO - Environmental Research
JF - Environmental Research
M1 - 118838
ER -