Abstract
In this paper, the effect of Ag3PO4/GO nanocomposite upon the antibiofouling and permeation properties of polyethersulfone (PES) mixed matrix membranes were explored. Through the nonsolvent induced phase inversion process, the PES nanofiltration (NF) membrane, including Ag3PO4/GO nanomaterials was prepared. A reduction reaction used to the functionalization of Ag3PO4 on GO nanosheets. Energy-dispersive X-ray (EDX), atomic force microscopy (AFM), water contact angle (WCA), scanning electron microscopy (SEM), zeta potential, and ATR-FTIR analysis were applied for the membrane characterization. All the membranes embedded through the nanocomposites presented a better performance in comparison with the neat PES membrane. The PES membrane containing 0.5 wt% of Ag3PO4/GO exhibited (83 %) flux recovery ratio besides (13 %) irreversible resistance during filtration of BSA protein. Membrane antibacterial properties were studied through the colony-counting process by the photocatalytic activity of Ag3PO4. The PES membrane prepared with 0.5 wt% Ag3PO4/GO reduced 72 % of viable Escherichia coli and 84 % of Staphylococcus aureus in the bacterial suspensions. The nanofiltration performance of the membranes in Lanasol Blue 3R dye separation was investigated. All of the nanocomposite membranes had dye rejection higher than 85 %.
Original language | English |
---|---|
Article number | 101638 |
Journal | Journal of Water Process Engineering |
Volume | 38 |
DOIs | |
Publication status | Published - Dec 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 Elsevier Ltd
Keywords
- Antibacterial
- Antifouling
- Dye separation
- Graphene oxide
- Nanofiltration
- Nanomaterials