Antarctic sea-ice thickness retrieval from ICESat: Inter-comparison of different approaches

Stefan Kern*, Burcu Ozsoy-çiçek, Anthony P. Worby

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Accurate circum-Antarctic sea-ice thickness is urgently required to better understand the different sea-ice cover evolution in both polar regions. Satellite radar and laser altimetry are currently the most promising tools for sea-ice thickness retrieval. We present qualitative inter-comparisons of winter and spring circum-Antarctic sea-ice thickness computed with different approaches from Ice Cloud and land Elevation Satellite (ICESat) laser altimeter total (sea ice plus snow) freeboard estimates. We find that approach A, which assumes total freeboard equals snow depth, and approach B, which uses empirical linear relationships between freeboard and thickness, provide the lowest sea-ice thickness and the smallest winter-to-spring increase in seasonal average modal and mean sea-ice thickness: A: 0.0 m and 0.04 m, B: 0.17 and 0.16 m, respectively. Approach C uses contemporary snow depth from satellite microwave radiometry, and we derive comparably large sea-ice thickness. Here we observe an unrealistically large winter-to-spring increase in seasonal average modal and mean sea-ice thickness of 0.68 m and 0.65 m, respectively, which we attribute to biases in the snow depth. We present a conceptually new approach D. It assumes that the two-layer system (sea ice, snow) can be represented by one layer. This layer has a modified density, which takes into account the influence of the snow on sea-ice buoyancy. With approach D we obtain thickness values and a winter-to-spring increase in average modal and mean sea-ice thickness of 0.17 m and 0.23 m, respectively, which lay between those of approaches B and C. We discuss retrieval uncertainty, systematic uncertainty sources, and the impact of grid resolution. We find that sea-ice thickness obtained with approaches C and D agrees best with independent sea-ice thickness information-if we take into account the potential bias of in situ and ship-based observations.

Original languageEnglish
Pages (from-to)538
Number of pages1
JournalRemote Sensing
Volume8
Issue number7
DOIs
Publication statusPublished - 24 Jun 2016

Bibliographical note

Publisher Copyright:
© 2016 by the authors.

Keywords

  • Antarctic
  • Inter-comparison
  • Laser altimetry
  • Microwave radiometry
  • Sea ice
  • Snow satellite remote sensing

Fingerprint

Dive into the research topics of 'Antarctic sea-ice thickness retrieval from ICESat: Inter-comparison of different approaches'. Together they form a unique fingerprint.

Cite this