TY - JOUR
T1 - An intercomparison between AMSR-E snow-depth and satellite C- and Ku-band radar backscatter data for Antarctic sea ice
AU - Kern, Stefan
AU - Ozsoy-Cicek, Burcu
AU - Willmes, Sascha
AU - Nicolaus, Marcel
AU - Haas, Christian
AU - Ackley, Stephen
PY - 2011
Y1 - 2011
N2 - Advanced Microwave Scanning Radiometer (AMSR-E) snow-depth data for Antarctic sea ice are compared with ship-based visual observations of snow depth, ice type and ridged-ice fraction, and with satellite C-band and Ku-band radar backscatter observations for two ship cruises into the Weddell Sea (ISPOL 2004-05, WWOS 2006) and one cruise into the Bellingshausen Sea (SIMBA 2007) during late winter/spring. Most (>75%) AMSR-E and ship-based snow-depth observations agree within 0.2 m during WWOS and SIMBA. Remaining observations indicate substantial underestimations of snow depths by AMSR-E data. These underestimations tend to increase with the ridged-ice fraction for WWOS and SIMBA. In areas with large snow depths, a combination of relatively stable low C-band radar backscatter and variable Ku-band radar backscatter is associated with undeformed first-year ice and may indicate snow metamorphism at this time of year during SIMBA. In areas with small snow depths, a combination of relatively stable low Ku-band radar backscatter, high C-band radar backscatter and low C-band radar backscatter standard deviations is associated with rough first-year ice during SIMBA. This information can help to better understand causes of the observed AMSR-E snow-depth bias during late-winter/spring conditions with decreasing average snow depth and to delineate areas where this bias occurs.
AB - Advanced Microwave Scanning Radiometer (AMSR-E) snow-depth data for Antarctic sea ice are compared with ship-based visual observations of snow depth, ice type and ridged-ice fraction, and with satellite C-band and Ku-band radar backscatter observations for two ship cruises into the Weddell Sea (ISPOL 2004-05, WWOS 2006) and one cruise into the Bellingshausen Sea (SIMBA 2007) during late winter/spring. Most (>75%) AMSR-E and ship-based snow-depth observations agree within 0.2 m during WWOS and SIMBA. Remaining observations indicate substantial underestimations of snow depths by AMSR-E data. These underestimations tend to increase with the ridged-ice fraction for WWOS and SIMBA. In areas with large snow depths, a combination of relatively stable low C-band radar backscatter and variable Ku-band radar backscatter is associated with undeformed first-year ice and may indicate snow metamorphism at this time of year during SIMBA. In areas with small snow depths, a combination of relatively stable low Ku-band radar backscatter, high C-band radar backscatter and low C-band radar backscatter standard deviations is associated with rough first-year ice during SIMBA. This information can help to better understand causes of the observed AMSR-E snow-depth bias during late-winter/spring conditions with decreasing average snow depth and to delineate areas where this bias occurs.
UR - http://www.scopus.com/inward/record.url?scp=79958239183&partnerID=8YFLogxK
U2 - 10.3189/172756411795931750
DO - 10.3189/172756411795931750
M3 - Article
AN - SCOPUS:79958239183
SN - 0260-3055
VL - 52
SP - 279
EP - 290
JO - Annals of Glaciology
JF - Annals of Glaciology
IS - 57 PART 2
ER -