TY - JOUR
T1 - An Innovative Approach to Electrical Motor Geometry Generation Using Machine Learning and Image Processing Techniques
AU - Demir, Ugur
AU - Akgun, Gazi
AU - Akuner, Mustafa Caner
AU - Pourkarimi, Majid
AU - Akgun, Omer
AU - Akinci, Tahir Cetin
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2023
Y1 - 2023
N2 - This paper presents a methodology for generating geometries for interior permanent magnet (IPM) motors in electric vehicles (EVs) through the application of artificial intelligence (AI) and image processing (IP) techniques. Due to the implementation of green agreements and policies aimed at reducing greenhouse gas emissions, EVs have become popularity. As a consequence, the improvement studies on the powertrain and battery system of EVs are focused. Especially for the powertrain, design optimization studies of e-motor have increased in the literature. One of the most widely used e-motor topologies is interior permanent magnet (IPM) motor. However, designing the IPM motor presents a challenge due to the dynamic considerations with geometric constraints. Therefore, e-motor designers encounter challenges related to determining initial geometry and the long time of the optimization process. To address these challenges, a novel approach is proposed that leverages machine learning (ML) techniques in combination with IP to generate initial geometries and design parameters for IPM motors. The proposed approach generates images of the motor geometry and extract dimensional features from the resulting images by using artificial neural networks (ANNs). The proposed method performs an analysis of the input vectors to reduce their size using techniques such as Histogram, 2D Maximum, 2D Mean, 2D Minimum, 2D Standard Deviation, and 2D Variance to enhance feature extraction. Additionally, FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform) are used to improve the neural network process in generating the image geometry. Further, the generated image geometry is improved by applying digital filtering techniques such as Log, FFT, Log+FFT, Laplacian, Sobel, and Histogram Equalization. Finally, the trained ANNs are tested to validate the results by using Ansys RMXprt and Maxwell. Eventually, the proposed method represents an innovative solution to generating initial geometries for IPM motors in EVs that satisfies desired design requirements. This approach leverages the power of AI and image processing techniques, which could lead to significant improvements in the optimization process for IPM motors, accelerate the designer's analysis process, and enhance the performance of EVs.
AB - This paper presents a methodology for generating geometries for interior permanent magnet (IPM) motors in electric vehicles (EVs) through the application of artificial intelligence (AI) and image processing (IP) techniques. Due to the implementation of green agreements and policies aimed at reducing greenhouse gas emissions, EVs have become popularity. As a consequence, the improvement studies on the powertrain and battery system of EVs are focused. Especially for the powertrain, design optimization studies of e-motor have increased in the literature. One of the most widely used e-motor topologies is interior permanent magnet (IPM) motor. However, designing the IPM motor presents a challenge due to the dynamic considerations with geometric constraints. Therefore, e-motor designers encounter challenges related to determining initial geometry and the long time of the optimization process. To address these challenges, a novel approach is proposed that leverages machine learning (ML) techniques in combination with IP to generate initial geometries and design parameters for IPM motors. The proposed approach generates images of the motor geometry and extract dimensional features from the resulting images by using artificial neural networks (ANNs). The proposed method performs an analysis of the input vectors to reduce their size using techniques such as Histogram, 2D Maximum, 2D Mean, 2D Minimum, 2D Standard Deviation, and 2D Variance to enhance feature extraction. Additionally, FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform) are used to improve the neural network process in generating the image geometry. Further, the generated image geometry is improved by applying digital filtering techniques such as Log, FFT, Log+FFT, Laplacian, Sobel, and Histogram Equalization. Finally, the trained ANNs are tested to validate the results by using Ansys RMXprt and Maxwell. Eventually, the proposed method represents an innovative solution to generating initial geometries for IPM motors in EVs that satisfies desired design requirements. This approach leverages the power of AI and image processing techniques, which could lead to significant improvements in the optimization process for IPM motors, accelerate the designer's analysis process, and enhance the performance of EVs.
KW - 2D filter
KW - Artificial neural network
KW - feature extraction
KW - image generation
KW - interior permanent magnet motor
KW - machine learning
UR - http://www.scopus.com/inward/record.url?scp=85160275246&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2023.3276885
DO - 10.1109/ACCESS.2023.3276885
M3 - Article
AN - SCOPUS:85160275246
SN - 2169-3536
VL - 11
SP - 48651
EP - 48666
JO - IEEE Access
JF - IEEE Access
ER -