An event driven decision support algorithm for command and control of UAV fleets

Oktay Arslan*, Gokhan Inalhan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

In this work, we focus on solving large-scale UAV fleets scheduling problem in dynamically changing (i.e. external event-driven or operator induced selection) scenarios. This autonomous scheduling of planned tasks and allocation of resources is designed to provide real-time decision support to the operator for problem sizes that is intractable or infeasible by one or a set of operators. We begin by analyzing the computational complexity of a well-known Solve & Robustify approach that generates robust and flexible schedules and propose the temporal space partition approach for decreasing the computationally expensive solve step. The improved algorithm, which is refereed as Earliest Start Time Algorithm with Partitioning (ESTAP ), divides the larger problem into smaller subproblems by partitioning the temporal space and then iteratively solves the subproblems. Benchmark problem comparisons with the classical ESTA formulation for two hundred tasks indicates that the proposed temporal space partitioning approach improves the computation time forty-fold while only incurring five percent increase in the total completion of the tasks.

Original languageEnglish
Title of host publication2009 American Control Conference, ACC 2009
Pages5198-5203
Number of pages6
DOIs
Publication statusPublished - 2009
Event2009 American Control Conference, ACC 2009 - St. Louis, MO, United States
Duration: 10 Jun 200912 Jun 2009

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Conference

Conference2009 American Control Conference, ACC 2009
Country/TerritoryUnited States
CitySt. Louis, MO
Period10/06/0912/06/09

Fingerprint

Dive into the research topics of 'An event driven decision support algorithm for command and control of UAV fleets'. Together they form a unique fingerprint.

Cite this