Abstract
Increased usage of smart meters enables information exchange between customers and utility providers in smart grid systems. Nowadays, the cloud-centric architecture has become a bottleneck for the decentralized and data-driven microgrids evolving from centralized Smart grids. Hence, fog computing is an appropriate paradigm to build distributed, latency-aware, and privacy-preserving energy demand applications in microgrid systems. In this work, we proposed a 3-tier architecture of a microgrid energy demand management system comprising edge, fog, and cloud layers. We set up a simulation environment where Raspberry Pi devices act as fog nodes and resource-efficient Docker applications run on these nodes. As the main contribution of the work, we developed a short-term load forecasting application based on an ensemble model that integrates support vector regression (SVR) and long-short term memory (LSTM) by leveraging the potential of distributed and low-latency fog nodes for complex models. We evaluated the forecasting model deployed in a fog-based simulation environment using the public REFIT Electrical Load dataset. We also tested the deployed fog-based simulation environment based on latency and execution time metrics.
Original language | English |
---|---|
Title of host publication | Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation - Proceedings of the INFUS 2021 Conference |
Editors | Cengiz Kahraman, Selcuk Cebi, Sezi Cevik Onar, Basar Oztaysi, A. Cagri Tolga, Irem Ucal Sari |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 170-178 |
Number of pages | 9 |
ISBN (Print) | 9783030855765 |
DOIs | |
Publication status | Published - 2022 |
Event | International Conference on Intelligent and Fuzzy Systems, INFUS 2021 - Istanbul, Turkey Duration: 24 Aug 2021 → 26 Aug 2021 |
Publication series
Name | Lecture Notes in Networks and Systems |
---|---|
Volume | 308 |
ISSN (Print) | 2367-3370 |
ISSN (Electronic) | 2367-3389 |
Conference
Conference | International Conference on Intelligent and Fuzzy Systems, INFUS 2021 |
---|---|
Country/Territory | Turkey |
City | Istanbul |
Period | 24/08/21 → 26/08/21 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Energy demand forecasting
- Ensemble learning
- Fog computing
- Internet of Things
- Microgrids
- Smart grids