An embedding technique to determine ττ backgrounds in proton-proton collision data

CMS Collaboration

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

An embedding technique is presented to estimate standard model it backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed nn events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at √s = 13 TeV corresponding to an integrated luminosity o 41.5 fb-1.

Original languageEnglish
Article numberP06032
JournalJournal of Instrumentation
Volume14
Issue number6
DOIs
Publication statusPublished - 21 Jun 2019

Bibliographical note

Publisher Copyright:
© 2019 CERN for the benefit of the CMS collaboration. Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.

Funding

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, theATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF(Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [62].

FundersFunder number
ASGC (Taiwan)
BSF-NSF
CEA-DRF
Cantons of Bern and Geneva
Czech Republic
DNSRCIN2P3-CNRS
EU-ESF
GridKA
INFN-CNAF
IRFU
MES of Russia
MIZŠ
MNE
NDGFCC-IN2P3
RGC
VSC CR
Wallenberg Foundation
National Science Foundation
U.S. Department of Energy
Alexander von Humboldt-Stiftung
Brookhaven National Laboratory
Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS)
Karlsruhe Institute of Technology
Horizon 2020 Framework Programme675440
H2020 Marie Skłodowska-Curie Actions
Multiple Sclerosis Scientific Research Foundation
CERN
Azərbaycan Milli Elmlər Akademiyası
Natural Sciences and Engineering Research Council of Canada
National Research Council Canada
Canada Foundation for Innovation
Science and Technology Facilities Council
Leverhulme Trust
Royal Society
European Research Council
European Cooperation in Science and Technology
Australian Research Council
Department of Science and Technology, Ministry of Science and Technology, India
Helmholtz-Gemeinschaft
Deutsche Forschungsgemeinschaft
Agence Nationale de la Recherche
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Danmarks Grundforskningsfond
German-Israeli Foundation for Scientific Research and Development
Fundação de Amparo à Pesquisa do Estado de São Paulo
National Natural Science Foundation of China
Ministerstvo Školství, Mládeže a Tělovýchovy
Fundação para a Ciência e a Tecnologia
Bundesministerium für Bildung und Forschung
Chinese Academy of Sciences
Austrian Science Fund
Generalitat de Catalunya
Agencia Nacional de Investigación y Desarrollo
Agencia Nacional de Promoción Científica y Tecnológica
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Ministerio de Economía y Competitividad
Bundesministerium für Wissenschaft, Forschung und Wirtschaft
General Secretariat for Research and Technology
Conselho Nacional de Desenvolvimento Científico e Tecnológico
National Research Foundation of Korea
Joint Institute for Nuclear Research
Nella and Leon Benoziyo Center for Neurological Diseases, Weizmann Institute of Science
Israel Science Foundation
Instituto Nazionale di Fisica Nucleare
Narodowe Centrum Nauki
Javna Agencija za Raziskovalno Dejavnost RS
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Ministerstwo Edukacji i Nauki
Ministry of Science and Technology, Taiwan
Centre National pour la Recherche Scientifique et Technique
Staatssekretariat für Bildung, Forschung und Innovation
British Columbia Knowledge Development Fund
European Regional Development Fund
Council on grants of the President of the Russian Federation
National Research Center "Kurchatov Institute"
Institutul de Fizică Atomică

    Keywords

    • Pattern recognition, cluster finding, calibration and fitting methods
    • Performance of high energy physics detectors

    Fingerprint

    Dive into the research topics of 'An embedding technique to determine ττ backgrounds in proton-proton collision data'. Together they form a unique fingerprint.

    Cite this