Abstract
This paper addresses the Hybrid Flow Shop (HFS) scheduling problems to minimize the makespan value. In recent years, much attention is given to heuristic and search techniques. Genetic algorithms (GAs) are also known as efficient heuristic and search techniques. This paper proposes an efficient genetic algorithm for hybrid flow shop scheduling problems. The proposed algorithm is tested by Carlier and Neron's (2000) benchmark problem from the literature. The computational results indicate that the proposed efficient genetic algorithm approach is effective in terms of reduced total completion time or makespan (Cmax) for HFS problems.
Original language | English |
---|---|
Pages (from-to) | 134-147 |
Number of pages | 14 |
Journal | International Journal of Computational Intelligence Systems |
Volume | 1 |
Issue number | 2 |
DOIs | |
Publication status | Published - May 2008 |
Keywords
- Completion time
- Genetic algorithm
- Hybrid flow shop scheduling