TY - GEN
T1 - An aerodynamic design and optimization of a heavy truck for drag reduction
AU - Selenbas, Bugra
AU - Gunes, Hasan
AU - Gocmen, Kenan
AU - Bahceci, Uygar
AU - Bayram, Bertan
PY - 2010
Y1 - 2010
N2 - In this paper, a computational fluid dynamics (CFD) study is carried out in an effort to design and optimize the cabin geometry and its various parts for drag reduction that include the side deflectors, the mirrors and the sun visor. For the validation of computational results, an experimental investigation using a 1/5 scale truck model has been carried out in a wind tunnel. The aerodynamic force as well as the surface-pressure point measurements carried out at selected wind speeds. The flow visualizations using smoke and oil were also performed. With the experimental results, the basic characteristics of flow over the cabin geometry (including the flow separation locations) are compared with the CFD results. The both steady and unsteady CFD simulations are performed. The comparison of steady/unsteady results reveals that the time-averaged unsteady flow characteristics are practically the same as the steady calculations for design purposes. In addition to CFD simulations involving the actual (real) truck cabin geometry, for the optimization of the specific cabin accessories, (e.g., side deflectors and mirrors), a generic truck model is also used for CFD analyses. The optimized side deflector geometry (e.g., the ratio of the air inlet and outlet area), and the optimum form of the mirrors for drag reduction have been realized by numerical investigations.
AB - In this paper, a computational fluid dynamics (CFD) study is carried out in an effort to design and optimize the cabin geometry and its various parts for drag reduction that include the side deflectors, the mirrors and the sun visor. For the validation of computational results, an experimental investigation using a 1/5 scale truck model has been carried out in a wind tunnel. The aerodynamic force as well as the surface-pressure point measurements carried out at selected wind speeds. The flow visualizations using smoke and oil were also performed. With the experimental results, the basic characteristics of flow over the cabin geometry (including the flow separation locations) are compared with the CFD results. The both steady and unsteady CFD simulations are performed. The comparison of steady/unsteady results reveals that the time-averaged unsteady flow characteristics are practically the same as the steady calculations for design purposes. In addition to CFD simulations involving the actual (real) truck cabin geometry, for the optimization of the specific cabin accessories, (e.g., side deflectors and mirrors), a generic truck model is also used for CFD analyses. The optimized side deflector geometry (e.g., the ratio of the air inlet and outlet area), and the optimum form of the mirrors for drag reduction have been realized by numerical investigations.
UR - http://www.scopus.com/inward/record.url?scp=79956113914&partnerID=8YFLogxK
U2 - 10.1115/ESDA2010-24482
DO - 10.1115/ESDA2010-24482
M3 - Conference contribution
AN - SCOPUS:79956113914
SN - 9780791849170
T3 - ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010
SP - 121
EP - 129
BT - ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010
T2 - ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010
Y2 - 12 July 2010 through 14 July 2010
ER -