Al-Ce co-doped BaTiO3 nanofibers as a high-performance bifunctional electrochemical supercapacitor and water-splitting electrocatalyst

Fatemeh Zakeri, Abbas Javid, Yasin Orooji*, Arezou Fazli, Amirreza Khataee, Alireza Khataee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Supercapacitors and water splitting cells have recently played a key role in offering green energy through converting renewable sources into electricity. Perovskite-type electrocatalysts such as BaTiO3, have been well-known for their ability to efficiently split water and serve as supercapacitors due to their high electrocatalytic activity. In this study, BaTiO3, Al-doped BaTiO3, Ce-doped BaTiO3, and Al-Ce co-doped BaTiO3 nanofibers were fabricated via a two-step hydrothermal method, which were then characterized and compared for their electrocatalytic performance. Based on the obtained results, Al-Ce co-doped BaTiO3 electrode exhibited a high capacitance of 224.18 Fg−1 at a scan rate of 10 mVs−1, high durability during over the 1000 CV cycles and 2000 charge–discharge cycles, proving effective energy storage properties. Additionally, the onset potentials for OER and HER processes were 11 and − 174 mV vs. RHE, respectively, demonstrating the high activity of the Al-Ce co-doped BaTiO3 electrode. Moreover, in overall water splitting, the amount of the overpotential was 0.820 mV at 10 mAcm−2, which confirmed the excellent efficiency of the electrode. Hence, the remarkable electrocatalytic performance of the Al-Ce co-doped BaTiO3 electrode make it a promising candidate for renewable energy technologies owing to its high conductivity and fast charge transfer.

Original languageEnglish
Article number9833
JournalScientific Reports
Volume14
Issue number1
DOIs
Publication statusPublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Keywords

  • BaTiO nanofibers
  • Hydrogen evolution reaction
  • Overall water splitting
  • Oxygen evolution reaction
  • Piezo-electric potential
  • Pseudo-capacitor
  • Supercapacitor

Fingerprint

Dive into the research topics of 'Al-Ce co-doped BaTiO3 nanofibers as a high-performance bifunctional electrochemical supercapacitor and water-splitting electrocatalyst'. Together they form a unique fingerprint.

Cite this