Aeroelastic predictions for steady and unsteady flow characteristics of the HIRENASD wing

Melike Nikbay*, Pinar Acar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

In this study, we focus on static and dynamic aeroelastic analyses of the HIRENASD wing based on reference experimental data for two different flight conditions for Aeroelastic Prediction Workshop-1. The major anticipations from the HIRENASD project are to improve the knowledge about aero-structural dynamics, and to get experimental and computational data in a wide range of flight conditions. The experiments have been formerly conducted in cryogenic medium to investigate steady and unsteady aeroelastic responses in transonic regime for low and high Reynolds numbers. For current aeroelastic computations, first, a free vibration analysis is performed in Nastran using the latest structural model provided by NASA. Sequentially, the modal solution is imported from the finite element solver to Zeus software which is an Euler equations based aeroelastic solver coupled with integral boundary layer method. The aerodynamic model and fluid structure interaction parameters are constructed in Zeus. Steady and unsteady aeroelastic results are examined for the specified stations along the wing span, and interpolated for chordwise direction so as to match them with the wind tunnel test points. The designated output parameters such as steady aerodynamic lift, moment and drag coefficients, and steady and unsteady pressure distributions along the chordwise direction are compared to the experimental data and NASA's FUN3D code results which are provided in literature.

Original languageEnglish
Pages (from-to)26-37
Number of pages12
JournalProgress in Computational Fluid Dynamics
Volume16
Issue number1
DOIs
Publication statusPublished - 2016

Bibliographical note

Publisher Copyright:
Copyright © 2016 Inderscience Enterprises Ltd.

Keywords

  • aeroelastic prediction
  • aeroelasticity
  • computational aeroelasticity
  • computational fluid dynamics
  • Euler equations.
  • fluid-structure interaction
  • HIRENASD
  • modal analysis
  • unsteady flow
  • wind tunnel test

Fingerprint

Dive into the research topics of 'Aeroelastic predictions for steady and unsteady flow characteristics of the HIRENASD wing'. Together they form a unique fingerprint.

Cite this