Active vibration control applications for adaptive aircraft wings modelled as thin-walled composite beams

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

In this study the closed-loop vibrational behavior of aircraft wing is investigated. The wing is modeled as an adaptive thin-walled composite beam with a kite type cross section. Several non-classical effects inherently exist in this beam model resulting from thin-walled beam theory such as material anisotropy, transverse shear deformation and warping restraint. In this case, anti-symmetric lay-up configuration i.e. Circumferentially Uniform Stiffness (CUS) is employed to form transverse-lateral bending and transverse shear coupled motion from amongst numerous other elastic couplings due to directionality property of thin-walled composite beams. Adaptive materials chosen as piezoelectric ceramics are used to achieve active vibration control and inserted into structures as layers. They are located symmetrically in host structure and spread over the entire beam span. As a result, a boundary moment is induced at the beam tip and in this case, the control is achieved via the boundary moment feedback control, yielding an adaptive change in the dynamical characteristics of the beam. Three different control applications are implemented namely proportional and velocity feedback and optimal control and the effect of slenderness ratio on the fundamental frequencies are investigated, enhanced and discussed.

Original languageEnglish
Title of host publication57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624103926
DOIs
Publication statusPublished - 2016
Event57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2016 - San Diego, United States
Duration: 4 Jan 20168 Jan 2016

Publication series

Name57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Conference

Conference57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2016
Country/TerritoryUnited States
CitySan Diego
Period4/01/168/01/16

Bibliographical note

Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

Fingerprint

Dive into the research topics of 'Active vibration control applications for adaptive aircraft wings modelled as thin-walled composite beams'. Together they form a unique fingerprint.

Cite this