TY - JOUR
T1 - Active fault segments along the North Anatolian Fault system in the Sea of Marmara
T2 - implication for seismic hazard
AU - Gasperini, Luca
AU - Stucchi, Massimiliano
AU - Cedro, Vincenzo
AU - Meghraoui, Mustapha
AU - Ucarkus, Gulsen
AU - Polonia, Alina
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/3
Y1 - 2021/3
N2 - A new analysis of high-resolution multibeam and seismic reflection data, collected during several oceanographic expeditions starting from 1999, allowed us to compile an updated morphotectonic map of the North Anatolian Fault below the Sea of Marmara. We reconstructed kinematics and geometries of individual fault segments, active at the time scale of 10 ka, an interval which includes several earthquake cycles, taking as stratigraphic marker the base of the latest marine transgression. Given the high deformation rates relative to sediment supply, most active tectonic structures have a morphological expression at the seafloor, even in presence of composite fault geometries and/or overprinting due to mass-wasting or turbidite deposits. In the frame of the right-lateral strike-slip domain characterizing the North Anatolian fault system, three types of deformation are observed: almost pure strike-slip faults, oriented mainly E–W; NE/SW-aligned axes of transpressive structures; NW/SE-oriented trans-tensional depressions. Fault segmentation occurs at different scales, but main segments develop along three major right-lateral oversteps, which delimit main fault branches, from east to west: (i) the transtensive Cinarcik segment; (ii) the Central (East and West) segments; and (iii) the westernmost Tekirdag segment. A quantitative morphometric analysis of the shallow deformation patterns observed by seafloor morphology maps and high-resolution seismic reflection profiles along the entire basin allowed to determine nature and cumulative lengths of individual fault segments. These data were used as inputs for empirical relationships, to estimate maximum expected Moment Magnitudes, obtaining values in the range of 6.8–7.4 for the Central, and 6.9–7.1 for the Cinarcik and Tekirdag segments, respectively. We discuss these findings considering analyses of historical catalogues and available paleoseismological studies for the Sea of Marmara region to formulate reliable seismic hazard scenarios.
AB - A new analysis of high-resolution multibeam and seismic reflection data, collected during several oceanographic expeditions starting from 1999, allowed us to compile an updated morphotectonic map of the North Anatolian Fault below the Sea of Marmara. We reconstructed kinematics and geometries of individual fault segments, active at the time scale of 10 ka, an interval which includes several earthquake cycles, taking as stratigraphic marker the base of the latest marine transgression. Given the high deformation rates relative to sediment supply, most active tectonic structures have a morphological expression at the seafloor, even in presence of composite fault geometries and/or overprinting due to mass-wasting or turbidite deposits. In the frame of the right-lateral strike-slip domain characterizing the North Anatolian fault system, three types of deformation are observed: almost pure strike-slip faults, oriented mainly E–W; NE/SW-aligned axes of transpressive structures; NW/SE-oriented trans-tensional depressions. Fault segmentation occurs at different scales, but main segments develop along three major right-lateral oversteps, which delimit main fault branches, from east to west: (i) the transtensive Cinarcik segment; (ii) the Central (East and West) segments; and (iii) the westernmost Tekirdag segment. A quantitative morphometric analysis of the shallow deformation patterns observed by seafloor morphology maps and high-resolution seismic reflection profiles along the entire basin allowed to determine nature and cumulative lengths of individual fault segments. These data were used as inputs for empirical relationships, to estimate maximum expected Moment Magnitudes, obtaining values in the range of 6.8–7.4 for the Central, and 6.9–7.1 for the Cinarcik and Tekirdag segments, respectively. We discuss these findings considering analyses of historical catalogues and available paleoseismological studies for the Sea of Marmara region to formulate reliable seismic hazard scenarios.
KW - Active fault segments
KW - Earthquakes
KW - Marine geophysics
KW - North Anatolian fault
KW - Sea of Marmara
KW - Seismic hazard
UR - http://www.scopus.com/inward/record.url?scp=85119042503&partnerID=8YFLogxK
U2 - 10.1007/s42990-021-00048-7
DO - 10.1007/s42990-021-00048-7
M3 - Article
AN - SCOPUS:85119042503
SN - 2661-863X
VL - 3
SP - 29
EP - 44
JO - Mediterranean Geoscience Reviews
JF - Mediterranean Geoscience Reviews
IS - 1
ER -