Achievements of the Earth orientation parameters prediction comparison campaign

M. Kalarus*, H. Schuh, W. Kosek, O. Akyilmaz, Ch Bizouard, D. Gambis, R. Gross, B. Jovanović, S. Kumakshev, H. Kutterer, P. J. Mendes Cerveira, S. Pasynok, L. Zotov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

126 Citations (Scopus)

Abstract

Precise transformations between the international celestial and terrestrial reference frames are needed for many advanced geodetic and astronomical tasks including positioning and navigation on Earth and in space. To perform this transformation at the time of observation, that is for real-time applications, accurate predictions of the Earth orientation parameters (EOP) are needed. The Earth orientation parameters prediction comparison campaign (EOP PCC) that started in October 2005 was organized for the purpose of assessing the accuracy of EOP predictions. This paper summarizes the results of the EOP PCC after nearly two and a half years of operational activity. The ultra short-term (predictions to 10 days into the future), short-term (30 days), and medium-term (500 days) EOP predictions submitted by the participants were evaluated by the same statistical technique based on the mean absolute prediction error using the IERS EOP 05 C04 series as a reference. A combined series of EOP predictions computed as a weighted mean of all submissions available at a given prediction epoch was also evaluated. The combined series is shown to perform very well, as do some of the individual series, especially those using atmospheric angular momentum forecasts. A main conclusion of the EOP PCC is that no single prediction technique performs the best for all EOP components and all prediction intervals.

Original languageEnglish
Pages (from-to)587-596
Number of pages10
JournalJournal of Geodesy
Volume84
Issue number10
DOIs
Publication statusPublished - 2010

Keywords

  • Combined solution
  • Earth orientation parameters
  • Polar motion
  • Predictions
  • Universal time
  • UT1

Fingerprint

Dive into the research topics of 'Achievements of the Earth orientation parameters prediction comparison campaign'. Together they form a unique fingerprint.

Cite this