Abstract
Recently, the use of unmanned aerial vehicles (UAV)s for accomplishing various tasks has gained a significant interest from both civilian and military organizations due to their adaptive, autonomous, and flexibility nature in different environments. The characteristics of UAV systems introduce new threats from which cyber attacks may benefit. Adaptive security solutions for UAVs are required to counter the growing threat surface. The security of UAV systems has therefore become one of the fastest growing research topics. Machine learning based security mechanisms have a potential to provide effective countermeasures that complement traditional security mechanisms. The main motivation of this survey is to the lack of a comprehensive literature review about reinforcement learning based security solutions for UAV systems. In this paper, we present a comprehensive review on the security of UAV systems focusing on deep-reinforcement learning-based security solutions. We present a general architecture of an UAV system that includes communication systems to show potential sources of vulnerabilities. Then, the threat surface of UAV systems is explored. We explain attacks on UAV systems according to the threats in a systematic way. In addition, we present countermeasures in the literature for each attack on UAVs. Furthermore, traditional defense mechanisms are explained to highlight requirements for reinforcement based security solutions on UAVs. Next, we present the main reinforcement algorithms. We examine security solutions with reinforcement learning algorithms and their limitations in a holistic approach. We also identify research challenges about reinforcement based security solutions on UAVs. Briefly, this survey provides key guidelines on UAV systems, threats, attacks, reinforcement learning algorithms, the security of UAV systems, and research challenges.
Original language | English |
---|---|
Article number | 103642 |
Journal | Ad Hoc Networks |
Volume | 164 |
DOIs | |
Publication status | Published - 1 Nov 2024 |
Bibliographical note
Publisher Copyright:© 2024 Elsevier B.V.
Keywords
- Attack
- Countermeasure
- Deep reinforcement learning
- Machine learning
- Security
- Threat
- Unmanned aerial vehicles
- Vulnerability