Abstract
Low-cost OEM GPS receivers with the capability of tracking the carrier phase are now used for many applications in the navigation and tracking arena. These receivers provide flexibility in applying carrier smoothing algorithms to improve the pseudorange positioning accuracy and even perform carrier-phase differential positioning. In this study, the performance of a low-cost single-frequency OEM GPS receiver for high-accuracy kinematic positioning in marine applications is investigated. As a first step, a set of zero baseline tests were carried out to evaluate the performance of the GPS receivers. In the second stage, a kinematic test was conducted at the Halic (Golden Horn), Istanbul. The results show that kinematic positioning with centimetre level accuracy can be achieved by the low-cost OEM GPS receiver in differential mode, suggesting its use in a variety of kinematic applications. The use of such a system could considerably reduce the cost of the GPS receiver and the total project costs of many applications.
Original language | English |
---|---|
Pages (from-to) | 687-697 |
Number of pages | 11 |
Journal | Journal of Navigation |
Volume | 62 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- GPS
- Kinematic Positioning
- Low-cost OEM GPS Receiver
- Zero Baseline Test