A PCR-free genosensing platform for detection of Shigella dysenteriae in human plasma samples by porous and honeycomb-like biochar decorated with ultrathin flower-like MoS2 nanosheets incorporated with Au nanoparticles

Hessamaddin Sohrabi, Mir Reza Majidi*, Karim Asadpour-Zeynali, Alireza Khataee, Mahsa Dastborhan, Ahad Mokhtarzadeh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)

Abstract

Shigella dysenteriae, a gram-negative bacterium, which results in the most infectious of bacterial shigellosis and dysenteries. In this study, an innovative gene detection platform based on label-free DNA sequences was developed to detect Shigella dysenteriae in human plasma samples. The porous and honeycomb-like structure of biochar (BC) was first synthesized through a pyrolysis process. Then, the produced biochar was effectively decorated with flower-like MoS2 nanosheets (MoS2/BC). The resulting nanocomposite was incorporated with Au nanoparticles (AuNPs) by applying chronoamperometry technique, and then the subsequent product including MoS2 nanosheets, biochar and AuNPs were immobilized on the Au electrode surface and used for modifier agent in electrochemical bio-assays. Structural and morphological study of the synthesized compounds were investigated using various characterization methods such as FE-SEM, TEM, EDS, FTIR, and XRD. Various electrochemical techniques including cyclic voltammetry (CV) and Differential pulse anodic stripping voltammetry (DPASV) have been used to investigate the applicability of the fabricated genosensing bio-assay. Under optimal conditions, LOD and LOQ were calculated 9.14 fM and 0.018 pM respectively. In addition, a linear range from 0.01 to 100 pM was obtained for single stranded-target DNA (ss-tDNA), with R2 of 0.9992. The recoveries ranged from 98.0 to 101.3%. The fabricated bio-detection assay demonstrated high selectivity for 1, 2, and 3 base mismatch sequences. In addition, a negative control of the gene detection platform which was performed to study selectivity was provided by ss-tDNA from Haemophilus influenzae, and Salmonella typhimurium. Moreover, it is important to mention that the organized bioassay is simply reusable and reproducible with the RSD% (relative standard deviation) ˂ 5 to next detection assays.

Original languageEnglish
Article number132531
JournalChemosphere
Volume288
DOIs
Publication statusPublished - Feb 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 Elsevier Ltd

Keywords

  • AuNPs
  • Biochar
  • DNA hybridization
  • Gene detection
  • MoS nanosheets
  • Shigella dysenteriae

Fingerprint

Dive into the research topics of 'A PCR-free genosensing platform for detection of Shigella dysenteriae in human plasma samples by porous and honeycomb-like biochar decorated with ultrathin flower-like MoS2 nanosheets incorporated with Au nanoparticles'. Together they form a unique fingerprint.

Cite this