A novel method for splice sites prediction using sequence component and hidden Markov model

Elham Pashaei, Alper Yilmaz, Mustafa Ozen, Nizamettin Aydin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Citations (Scopus)

Abstract

With increasing growth of DNA sequence data, it has become an urgent demand to develop new methods to accurately predict the genes. The performance of gene detection methods mainly depend on the efficiency of splice site prediction methods. In this paper, a novel method for detecting splice sites is proposed by using a new effective DNA encoding method and AdaBoost.M1 classifier. Our proposed DNA encoding method is based on multi-scale component (MSC) and first order Markov model (MM1). It has been applied to the HS3D dataset with repeated 10 fold cross validation. The experimental results indicate that the new method has increased the classification accuracy and outperformed some current methods such as MM1-SVM, Reduced MM1-SVM, SVM-B, LVMM, DM-SVM, DM2-AdaBoost and MS C+Pos(+APR)-SVM.

Original languageEnglish
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3076-3079
Number of pages4
ISBN (Electronic)9781457702204
DOIs
Publication statusPublished - 13 Oct 2016
Externally publishedYes
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: 16 Aug 201620 Aug 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Conference

Conference38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period16/08/1620/08/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Keywords

  • AdaBoost.M1 classifier
  • DNA encoding method
  • Splice site prediction

Fingerprint

Dive into the research topics of 'A novel method for splice sites prediction using sequence component and hidden Markov model'. Together they form a unique fingerprint.

Cite this