A fuzzy neural tree based on likelihood

Ozer Ciftcioglu, Michael S. Bittermann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

A novel type of fuzzy neural system is presented. It involves the neural tree concept and is termed as fuzzy neural tree (FNT). Each tree node uses a Gaussian as a fuzzy membership function so that the approach uniquely is in align with both the probabilistic and possibilistic interpretations of fuzzy membership, thereby presenting a novel type of network. The tree is structured by the domain knowledge and parameterized by likelihood. The FNT is described in detail pointing out its various potential utilizations, in which complex modeling and multi-objective optimization are demanded. One of such utilizations concerns design. This is exemplified and its effectiveness is demonstrated by computer experiments in the realm of Architectural design.

Original languageEnglish
Title of host publicationFUZZ-IEEE 2015 - IEEE International Conference on Fuzzy Systems
EditorsAdnan Yazici, Nikhil R. Pal, Hisao Ishibuchi, Bulent Tutmez, Chin-Teng Lin, Joao M. C. Sousa, Uzay Kaymak, Trevor Martin
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467374286
DOIs
Publication statusPublished - 25 Nov 2015
Externally publishedYes
EventIEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015 - Istanbul, Turkey
Duration: 2 Aug 20155 Aug 2015

Publication series

NameIEEE International Conference on Fuzzy Systems
Volume2015-November
ISSN (Print)1098-7584

Conference

ConferenceIEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015
Country/TerritoryTurkey
CityIstanbul
Period2/08/155/08/15

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

Keywords

  • evolutionary computation
  • Fuzzy logic
  • knowledge modeling
  • likelihood
  • neural tree
  • probability possibility

Fingerprint

Dive into the research topics of 'A fuzzy neural tree based on likelihood'. Together they form a unique fingerprint.

Cite this