A Comparative Study on the Interaction Between Protein and PET Micro/Nanoplastics: Structural and Surface Characteristics of Particles and Impacts on Lung Carcinoma Cells (A549) and Staphylococcus aureus

Asli Baysal, Hasan Saygin*, Ahu Soyocak

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The interaction between particles and proteins is a key factor determining the toxicity responses of particles. Therefore, this study aimed to examine the interaction between the emerging pollutant polyethylene terephthalate micro/nanoplastics from water bottles with bovine serum albumin. The physicochemical characteristics of micro/nanoplastics were investigated using nuclear magnetic resonance, x-ray diffraction, Fourier transform infrared, dynamic light scattering, and x-ray energy dispersive spectroscopy after exposure to various concentrations and durations of protein. Furthermore, the impact of protein-treated micro/nanoplastics on biological activities was examined using the mitochondrial activity and membrane integrity of A549 cells and the activity and biofilm production of Staphylococcus aureus. The structural characteristics of micro/nanoplastics revealed an interaction with protein. For instance, the assignment of protein-related new proton signals (e.g., -CH2, methylene protons of CH2O), changes in available protons s (e.g., -CH and -CH3), crystallinity, functional groups, elemental ratios, zeta potentials (−11.3 ± 1.3 to −12.4 ± 1.7 to 25.5 ± 2.3 mV), and particle size (395 ± 76 to 496 ± 60 to 866 ± 82 nm) of micro/nanoplastics were significantly observed after protein treatment. In addition, the loading (0.012–0.027 mM) and releasing (0.008–0.013 mM) of protein also showed similar responses with structural characteristics. Moreover, the cell-based responses were changed regarding the structural and surface characteristics of micro/nanoplastics and the loading efficiencies of protein. For example, insignificant mitochondrial activity (2%–10%) and significant membrane integrity (12%–28%) of A549 cells increased compared with control, and reductions in bacterial activity (5%–40%) in many cases and biofilm production specifically at low dose of all treatment stages (13%–46% reduction) were observed.

Original languageEnglish
JournalEnvironmental Toxicology
DOIs
Publication statusAccepted/In press - 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s). Environmental Toxicology published by Wiley Periodicals LLC.

Keywords

  • bovine serum albumin
  • cytotoxicity
  • microplastics
  • pathogen
  • weathering

Fingerprint

Dive into the research topics of 'A Comparative Study on the Interaction Between Protein and PET Micro/Nanoplastics: Structural and Surface Characteristics of Particles and Impacts on Lung Carcinoma Cells (A549) and Staphylococcus aureus'. Together they form a unique fingerprint.

Cite this