Abstract
This paper proposes an AI-based braking control system for aircraft during landing. Utilizing scientific machine learning, we train an agent to apply the most effective braking strategy under various landing conditions. This approach ensures physically consistent outputs by grounding the algorithm in the principles of landing physics. Our results demonstrate that the aircraft can successfully decelerate without skidding across all runway conditions and landing speeds. Additionally, the algorithm maintains performance and safety even when brake performance degradation and initial yaw angles are introduced. This robustness is crucial for the certification of AI in safety-critical systems, as the proposed framework provides a reliable and effective solution.
Original language | English |
---|---|
Title of host publication | DASC 2024 - Digital Avionics Systems Conference, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350349610 |
DOIs | |
Publication status | Published - 2024 |
Externally published | Yes |
Event | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024 - San Diego, United States Duration: 29 Sept 2024 → 3 Oct 2024 |
Publication series
Name | AIAA/IEEE Digital Avionics Systems Conference - Proceedings |
---|---|
ISSN (Print) | 2155-7195 |
ISSN (Electronic) | 2155-7209 |
Conference
Conference | 43rd AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2024 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 29/09/24 → 3/10/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- aircraft braking
- certification
- safety critical systems
- scientific machine learning