Abstract
Designing visual content and characters for games is a time consuming task even for designers and illustrators with experience. Most of the game companies and developers use procedural methods to automate the design process. The visual content produced by these algorithms is limited in terms of variation. In this paper, we propose to use Generative Adversarial Networks (GANs) for visual content production. Two different rpg and dnd visual image datasets were collected over the internet for training and 6 different GAN models were trained on them. In 3 of 18 experiments, transfer learning methods are used because of the limited datasets. The Frechet Inception Distance metric was used to compare the model results. As a result, SNGAN was the most successful in both datasets. Moreover, the transfer learning method (WGAN-GP, BigGAN) was more successful than the from scratch method.
Translated title of the contribution | Game Character Generation with Generative Adversarial Networks |
---|---|
Original language | Turkish |
Title of host publication | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665450928 |
DOIs | |
Publication status | Published - 2022 |
Event | 30th Signal Processing and Communications Applications Conference, SIU 2022 - Safranbolu, Turkey Duration: 15 May 2022 → 18 May 2022 |
Publication series
Name | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 |
---|
Conference
Conference | 30th Signal Processing and Communications Applications Conference, SIU 2022 |
---|---|
Country/Territory | Turkey |
City | Safranbolu |
Period | 15/05/22 → 18/05/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.