Quantum Super-Exchange Energy Storage Platform

Project: ResearchEU

Project Details

Description

Batteries are a major driving force behind EU's goal to be climate neutral by 2050–with net-zero greenhouse gas emissions. However, all batteries suffer from severe performance and safety challenges (fire and explosion) and fast-charging limitations due to two fundamental challenges:1) The complex and uncontrollable microscopic electron and ion interactions at dynamic interfaces; 2) The highly in-homogeneous electric field inside the battery cell that leads to chaotic carrier migration. In this project, I tackle these problems by developing a quantum super-exchange energy storage platform (QUEEN), which enables atomically precise fabrication of 2D hybrid nanomaterials effectively transforming them into programable matter. In QUEEN, my aim is 1) Developing a quantum arc pen electro pulse lithography (Q-ARC) technique including a nanoscale 'pen' (ARC-PEN) with uniquely modified tips (special gas inlets/outlets) to remove/replace targeted atoms with great precision. 2) Using Q-ARC techniques, investigating novel patterns to fabricate an in-plane hybrid 2D material system with band gap engineering, Coulomb blockage and ballistic transport. 3) Leveraging QUEEN's near atom-by-atom fabrication, to create an in-situ testing platform to investigate quantum phenomena at complex interfaces. QUEEN will enable the development of superior battery architectures with i) precise and programmable control carrier transport, ii) groundbreakingly thin battery operation distances (2nm-5nm between anode and cathode), iii) very high mobility/instantaneous ion transport, iv) blueprint for extra charge storage mechanism. My multidisciplinary background in advanced device engineering and physics will enable me to accomplish the ambitious goals of this project, which will transform battery technology going well beyond the state of art by introducing control to carrier dynamics. Furthermore, QUEEN unlocks the potential for 2D materials in areas like biology, flexible electronics and spintronic.
AcronymQUEEN
StatusActive
Effective start/end date1/01/2331/12/27

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.